Close Menu
  • News
  • Medical
  • Technology
  • Nanomaterials
  • Research
  • Blog
    • Nasiol.com
  • Contact
    • Tech7685@gmail.com
What's Hot

Dual-stage monitoring technique for nanocomposites can streamline manufacturing and property tracking

May 11, 2025

Probing the molecular mechanisms of metastasis

May 10, 2025

AI-powered electronic nose detects diverse scents for health care and environmental applications

May 10, 2025
Facebook X (Twitter) Instagram
Nanotech – Nanomaterials | Medical | Research | News Stories Updated Daily Nanotech – Nanomaterials | Medical | Research | News Stories Updated Daily
  • News
  • Medical
  • Technology
  • Nanomaterials
  • Research
  • Blog
    • Nasiol.com
  • Contact
    • Tech7685@gmail.com
Facebook X (Twitter) Instagram
Nanotech – Nanomaterials | Medical | Research | News Stories Updated Daily Nanotech – Nanomaterials | Medical | Research | News Stories Updated Daily
Home»News»Discovery of bistable nanocrystals promises faster, more energy-efficient optical computing
News

Discovery of bistable nanocrystals promises faster, more energy-efficient optical computing

January 10, 2025No Comments4 Mins Read
Facebook Twitter Pinterest Telegram LinkedIn Tumblr WhatsApp Email
Discovery of bistable nanocrystals promises faster, more energy-efficient optical computing
Share
Facebook Twitter LinkedIn Pinterest Telegram Email
Optically bistable nanocrystals can store information that is written and read entirely through light, making them useful for building small and scalable optical memory units. These nanocrystals are controlled by lasers: one delivers continuous power, while the other triggers them to emit light after a brief pulse. This functionality mimics the behavior of electronic transistors and paves the way for devices where light controls light. Image provided by Artiom Skripka, OSU College of Science. Credit: Artiom Skripka, OSU College of Science

Scientists, including an Oregon State University chemistry researcher, have taken a key step toward faster, more energy-efficient artificial intelligence, and data processing in general, with the discovery of luminescent nanocrystals that can be quickly toggled from light to dark and back again.

“The extraordinary switching and memory capabilities of these nanocrystals may one day become integral to optical computing—a way to rapidly process and store information using light particles, which travel faster than anything in the universe,” said Artiom Skripka, assistant professor in the OSU College of Science.

Published in Nature Photonics, the study by Skripka and collaborators at Lawrence Berkeley National Laboratory, Columbia University and the Autonomous University of Madrid involves a type of material known as avalanching nanoparticles.

Nanomaterials are tiny bits of matter measuring between one-billionth and one-hundred-billionths of a meter, and avalanching nanoparticles feature extreme non-linearity in their light-emission properties—they emit light whose intensity can increase massively with a small increase in the intensity of the laser that’s exciting them.

The researchers studied nanocrystals composed of potassium, chlorine and lead and doped with neodymium. By themselves, the KPb2Cl5 nanocrystals do not interact with light; however, as hosts, they enable their neodymium guest ions to handle light signals more efficiently, making them useful for optoelectronics, laser technology and other optical applications.

“Normally, luminescent materials give off light when they are excited by a laser and remain dark when they are not,” Skripka said. “In contrast, we were surprised to find that our nanocrystals live parallel lives. Under certain conditions, they show a peculiar behavior: They can be either bright or dark under exactly the same laser excitation wavelength and power.”

See also  Advanced microscopy method reveals hidden world of nanoscale optical metamaterials

That behavior is referred to as intrinsic optical bistability. The nanocrystals’ intrinsic optical bistability is an advance toward photonic integrated circuits that may be able to outperform current electronic and optoelectronic systems, and with greater efficiency.

“If the crystals are dark to start with, we need a higher laser power to switch them on and observe emission, but once they emit, we can observe their emission at lower laser powers than we needed to switch them on initially,” Skripka said. “It’s like riding a bike—to get it going, you have to push the pedals hard, but once it is in motion, you need less effort to keep it going. Their luminescence can be turned on and off really abruptly, as if by pushing a button.”

The low-power switching capabilities of the nanocrystals align with the global effort to reduce the amount of energy consumed by the growing presence of artificial intelligence, data centers and electronic devices, he added. Not only do AI applications require substantial computational power, they are often constrained by limitations associated with existing hardware, a situation this new research could also address.

Discover the latest in science, tech, and space with over 100,000 subscribers who rely on Phys.org for daily insights.
Sign up for our free newsletter and get updates on breakthroughs,
innovations, and research that matter—daily or weekly.

“Integrating photonic materials with intrinsic optical bistability could mean faster and more efficient data processors, enhancing machine learning algorithms and data analysis,” Skripka said. “It could also mean more-efficient light-based devices of the type used in fields like telecommunications, medical imaging and environmental sensing.”

See also  3D-printed plasmonic plastic enables large-scale optical sensor production

Additionally, he said, the study complements existing efforts to develop powerful, general-purpose optical computers, which are based on the behavior of light and matter at the nanoscale, and underscores the importance of fundamental research in driving innovation and economic growth.

“Our findings are an exciting development, but more research is necessary to address challenges such as scalability and integration with existing technologies before our discovery finds a home in practical applications,” Skripka said.

Provided by
Oregon State University



Source link

bistable Computing discovery Energyefficient faster nanocrystals optical Promises
Share. Facebook Twitter Pinterest LinkedIn Tumblr Email

Related Posts

Dual-stage monitoring technique for nanocomposites can streamline manufacturing and property tracking

May 11, 2025

Probing the molecular mechanisms of metastasis

May 10, 2025

AI-powered electronic nose detects diverse scents for health care and environmental applications

May 10, 2025

Microbubble dynamics in boiling water enable precision fluid manipulation

May 9, 2025

Unique molecule may lead to smaller, more efficient computers

May 9, 2025

Depositing quantum dots on corrugated chips improves photodetector capabilities

May 8, 2025

Comments are closed.

Top Articles
News

Nasty pollutant shown to be the missing ingredient for carbon nanotube films for touchscreens and solar cells

Medical

New vaccine technology provides protection against broad range of coronaviruses in mice

Medical

Innovative Subak tool offers affordable solution for detecting nuclease digestion

Editors Picks

Dual-stage monitoring technique for nanocomposites can streamline manufacturing and property tracking

May 11, 2025

Probing the molecular mechanisms of metastasis

May 10, 2025

AI-powered electronic nose detects diverse scents for health care and environmental applications

May 10, 2025

Microbubble dynamics in boiling water enable precision fluid manipulation

May 9, 2025
About Us
About Us

Your go-to source for the latest nanotechnology breakthroughs. Explore innovations, applications, and implications shaping the future at the molecular level. Stay informed, embrace the nano-revolution.

We're accepting new partnerships right now.

Facebook X (Twitter) Instagram Pinterest
Our Picks

Scientists discover way to ‘grow’ sub-nanometer sized transistors

July 11, 2024

How a Laser on a Chip Is Changing the Game in Photonics

December 26, 2023

Quantum Material Exhibits Brain-Like “Non-Local” Behavior

August 20, 2023

Subscribe to Updates

Get the latest creative Nano Tech news from Elnano.com

© 2025 Elnano.com - All rights reserved.
  • Contact
  • Privacy Policy
  • Terms & Conditions

Type above and press Enter to search. Press Esc to cancel.

Cleantalk Pixel