Close Menu
  • News
  • Medical
  • Technology
  • Nanomaterials
  • Research
  • Blog
    • Nasiol.com
  • Contact
    • Tech7685@gmail.com
What's Hot

Physicists create ultra-stretchable graphene via an accordion-like rippling effect

May 14, 2025

Silver nanoparticles produced by fungus could be used to prevent and treat COVID-19

May 14, 2025

An electronic band-aid that delivers therapy directly to organs

May 13, 2025
Facebook X (Twitter) Instagram
Nanotech – Nanomaterials | Medical | Research | News Stories Updated Daily Nanotech – Nanomaterials | Medical | Research | News Stories Updated Daily
  • News
  • Medical
  • Technology
  • Nanomaterials
  • Research
  • Blog
    • Nasiol.com
  • Contact
    • Tech7685@gmail.com
Facebook X (Twitter) Instagram
Nanotech – Nanomaterials | Medical | Research | News Stories Updated Daily Nanotech – Nanomaterials | Medical | Research | News Stories Updated Daily
Home»News»Device malfunctions from continuous current lead to discovery that can improve design of microelectronic devices
News

Device malfunctions from continuous current lead to discovery that can improve design of microelectronic devices

September 24, 2024No Comments4 Mins Read
Facebook Twitter Pinterest Telegram LinkedIn Tumblr WhatsApp Email
Device malfunctions from continuous current lead to discovery that can improve design of microelectronic devices
Share
Facebook Twitter LinkedIn Pinterest Telegram Email
For the first time, researchers were able to observe a “pinhole” within a device and observe how it degrades in real-time. Credit: Mkhoyan Lab, University of Minnesota

A new study led by researchers at the University of Minnesota Twin Cities is providing new insights into how next-generation electronics, including memory components in computers, break down or degrade over time. Understanding the reasons for degradation could help improve efficiency of data storage solutions.

The research is published in ACS Nano and is featured on the cover of the journal.

Advances in computing technology continue to increase the demand for efficient data storage solutions. Spintronic magnetic tunnel junctions (MTJs)—nanostructured devices that use the spin of the electrons to improve hard drives, sensors, and other microelectronics systems, including Magnetic Random Access Memory (MRAM)—create promising alternatives for the next generation of memory devices.

MTJs have been the building blocks for the non-volatile memory in products like smart watches and in-memory computing with a promise for applications to improve energy efficiency in AI.

Using a sophisticated electron microscope, researchers looked at the nanopillars within these systems, which are extremely small, transparent layers within the device. The researchers ran a current through the device to see how it operates. As they increased the current, they were able to observe how the device degrades and eventually dies in real time.

“Real-time transmission electron microscopy (TEM) experiments can be challenging, even for experienced researchers,” said Dr. Hwanhui Yun, first author on the paper and postdoctoral research associate in the University of Minnesota’s Department of Chemical Engineering and Material Sciences. “But after dozens of failures and optimizations, working samples were consistently produced.”

By doing this, they discovered that over time with a continuous current, the layers of the device get pinched and cause the device to malfunction. Previous research theorized this, but this is the first time researchers have been able to observe this phenomenon. Once the device forms a “pinhole” (the pinch), it is in the early stages of degradation. As the researchers continued to add more and more current to the device, it melts down and completely burns out.

See also  Researchers create power-generating, gel electret-based device for wearable sensors

“What was unusual with this discovery is that we observed this burn out at a much lower temperature than what previous research thought was possible,” said Andre Mkhoyan, a senior author on the paper and professor and Ray D. and Mary T. Johnson Chair in the University of Minnesota Department of Chemical Engineering and Material Sciences. “The temperature was almost half of the temperature that had been expected before.”

Looking more closely at the device at the atomic scale, researchers realized materials that small have very different properties, including melting temperature. This means that the device will completely fail at a very different time frame than anyone has known before.

“There has been a high demand to understand the interfaces between layers in real time under real working conditions, such as applying current and voltage, but no one has achieved this level of understanding before,” said Jian-Ping Wang, a senior author on the paper and a Distinguished McKnight Professor and Robert F. Hartmann Chair in the Department of Electrical and Computer Engineering at the University of Minnesota.

“We are very happy to say that the team has discovered something that will be directly impacting the next generation microelectronic devices for our semiconductor industry,” Wang added.

The researchers hope this knowledge can be used in the future to improve design of computer memory units to increase longevity and efficiency.

In addition to Yun, Mkhoyan, and Wang, the team included University of Minnesota Department of Electrical and Computer Engineering postdoctoral researcher Deyuan Lyu, research associate Yang Lv, former postdoctoral researcher Brandon Zink, and researchers from the University of Arizona Department of Physics.

See also  Unique copper nanocluster design boosts CO₂ reduction selectivity

Provided by
University of Minnesota



Source link

continuous Current design Device Devices discovery improve lead malfunctions Microelectronic
Share. Facebook Twitter Pinterest LinkedIn Tumblr Email

Related Posts

Physicists create ultra-stretchable graphene via an accordion-like rippling effect

May 14, 2025

Silver nanoparticles produced by fungus could be used to prevent and treat COVID-19

May 14, 2025

An electronic band-aid that delivers therapy directly to organs

May 13, 2025

Breathable algae offers a new path

May 13, 2025

A Solution for Soil and Crop Improvement

May 12, 2025

Low-coordination Mn single-atom nanozymes enable imaging-guided cancer therapy

May 12, 2025

Comments are closed.

Top Articles
News

Utilizing AFM for Photomask Repair in Photolithography

News

Nanoliposomes pave way for treatment of rare genetic disorder

News

Nanoscale ‘tattoos’ for individual cells could provide early warnings for health problems

Editors Picks

Physicists create ultra-stretchable graphene via an accordion-like rippling effect

May 14, 2025

Silver nanoparticles produced by fungus could be used to prevent and treat COVID-19

May 14, 2025

An electronic band-aid that delivers therapy directly to organs

May 13, 2025

Breathable algae offers a new path

May 13, 2025
About Us
About Us

Your go-to source for the latest nanotechnology breakthroughs. Explore innovations, applications, and implications shaping the future at the molecular level. Stay informed, embrace the nano-revolution.

We're accepting new partnerships right now.

Facebook X (Twitter) Instagram Pinterest
Our Picks

Rocket-inspired reaction yields carbon with record surface area

December 29, 2024

RNA interference and nanomedicine join forces to fight dangerous fungal infections

April 5, 2025

This modified stainless steel could kill bacteria without antibiotics or chemicals

May 28, 2024

Subscribe to Updates

Get the latest creative Nano Tech news from Elnano.com

© 2025 Elnano.com - All rights reserved.
  • Contact
  • Privacy Policy
  • Terms & Conditions

Type above and press Enter to search. Press Esc to cancel.

Cleantalk Pixel