Close Menu
  • News
  • Medical
  • Technology
  • Nanomaterials
  • Research
  • Blog
    • Nasiol.com
  • Contact
    • Tech7685@gmail.com
What's Hot

2D hybrid material integrates graphene and silica glass for next-generation electronics

June 4, 2025

Zeolite nanopore model links crystal size to metal cluster migration and catalyst performance

June 4, 2025

Spontaneous symmetry breaking in electron systems proves elusive

June 3, 2025
Facebook X (Twitter) Instagram
Nanotech – Nanomaterials | Medical | Research | News Stories Updated Daily Nanotech – Nanomaterials | Medical | Research | News Stories Updated Daily
  • News
  • Medical
  • Technology
  • Nanomaterials
  • Research
  • Blog
    • Nasiol.com
  • Contact
    • Tech7685@gmail.com
Facebook X (Twitter) Instagram
Nanotech – Nanomaterials | Medical | Research | News Stories Updated Daily Nanotech – Nanomaterials | Medical | Research | News Stories Updated Daily
Home»News»Creating optical logic gates from graphene nanoribbons
News

Creating optical logic gates from graphene nanoribbons

November 26, 2023No Comments2 Mins Read
Facebook Twitter Pinterest Telegram LinkedIn Tumblr WhatsApp Email
Creating optical logic gates from graphene nanoribbons
Share
Facebook Twitter LinkedIn Pinterest Telegram Email
Graphical abstract. Credit: The European Physical Journal D (2023). DOI: 10.1140/epjd/s10053-023-00748-9

Research into artificial intelligence (AI) network computing has made significant progress in recent years but has so far been held back by the limitations of logic gates in conventional computer chips. Through new research published in The European Physical Journal D, a team led by Aijin Zhu at Guilin University of Electronic Technology, China, introduced a graphene-based optical logic gate, which addresses many of these challenges.

The design could lead to a new generation of computer chips that consume less energy while reaching higher computing speeds and efficiencies. This could, in turn, pave the way for the use of AI in computer networks to automate tasks and improve decision-making—leading to enhanced performance, security, and functionality.

There are many advantages to microchips whose component logic gates exchange signals using light instead of electrical current. However, current designs are often bulky, somewhat unstable, and vulnerable to information loss.

In their paper, Zhu’s team introduced a graphene-based alternative composed of Y-shaped graphene nanoribbons bonded on top of a layer of insulation. This design is ideal for hosting plasmon waves, collective oscillations of electrons that arise at the interface between the graphene and the insulating medium. They can be triggered by the light waves in incoming optical signals and can also generate outgoing signals themselves after the information is processed by the logic gate.

Since surface plasmon wavelengths are shorter than those of optical light waves, the researchers show that their setup can become far more compact than previous designs of optical logic gates. Their device can be switched on and off using an external voltage, which manipulates the energy levels at which electrons in graphene are available for conveying electrical current.

See also  New method links graphene nanolayers for tougher, elastic films

In their experiments, Zhu’s team achieved an impressively high ratio between the power level of their gate’s ‘on’ and ‘off’ states, where it transmits and blocks data, respectively. As well as outperforming previous optical logic gates, their design also benefits from a small size, low loss of information, and high stability.


Source link

creating gates Graphene logic nanoribbons optical
Share. Facebook Twitter Pinterest LinkedIn Tumblr Email

Related Posts

2D hybrid material integrates graphene and silica glass for next-generation electronics

June 4, 2025

Zeolite nanopore model links crystal size to metal cluster migration and catalyst performance

June 4, 2025

Spontaneous symmetry breaking in electron systems proves elusive

June 3, 2025

Improving Crop Tolerance to Drought and Heat Using Nanomaterials

June 3, 2025

Crystal-modifying agent piracetam provides scalable strategy for high-efficiency all-perovskite tandem solar cells

June 3, 2025

Phonon decoupling in naturally occurring mineral enables subatomic ferroelectric memory

June 2, 2025

Comments are closed.

Top Articles
Research

Hidden Costs in Currency Transfers: How Banks and Brokers Are Charging You More

Medical

New platform mimics immune interactions to boost cancer treatment

News

Electrospun Nanofiber Based Structures for Electromagnetic Interference Shielding

Editors Picks

2D hybrid material integrates graphene and silica glass for next-generation electronics

June 4, 2025

Zeolite nanopore model links crystal size to metal cluster migration and catalyst performance

June 4, 2025

Spontaneous symmetry breaking in electron systems proves elusive

June 3, 2025

Improving Crop Tolerance to Drought and Heat Using Nanomaterials

June 3, 2025
About Us
About Us

Your go-to source for the latest nanotechnology breakthroughs. Explore innovations, applications, and implications shaping the future at the molecular level. Stay informed, embrace the nano-revolution.

We're accepting new partnerships right now.

Facebook X (Twitter) Instagram Pinterest
Our Picks

Graphene’s new ion permeability could transform water filtration and sensors

January 25, 2025

Checkmate! Quantum Computing Breakthrough Via Scalable Quantum Dot Chessboard

September 5, 2023

Unveiling the Mysteries of Electron Tunneling

January 25, 2024

Subscribe to Updates

Get the latest creative Nano Tech news from Elnano.com

© 2025 Elnano.com - All rights reserved.
  • Contact
  • Privacy Policy
  • Terms & Conditions

Type above and press Enter to search. Press Esc to cancel.

Cleantalk Pixel