Close Menu
  • News
  • Medical
  • Technology
  • Nanomaterials
  • Research
  • Blog
    • Nasiol.com
  • Contact
    • Tech7685@gmail.com
What's Hot

Large-aperture MEMS modulator paves way for high-speed, energy-efficient optical communication systems

May 11, 2025

Dual-stage monitoring technique for nanocomposites can streamline manufacturing and property tracking

May 11, 2025

Probing the molecular mechanisms of metastasis

May 10, 2025
Facebook X (Twitter) Instagram
Nanotech – Nanomaterials | Medical | Research | News Stories Updated Daily Nanotech – Nanomaterials | Medical | Research | News Stories Updated Daily
  • News
  • Medical
  • Technology
  • Nanomaterials
  • Research
  • Blog
    • Nasiol.com
  • Contact
    • Tech7685@gmail.com
Facebook X (Twitter) Instagram
Nanotech – Nanomaterials | Medical | Research | News Stories Updated Daily Nanotech – Nanomaterials | Medical | Research | News Stories Updated Daily
Home»News»Creating a broadband diffractive graphene orbital angular momentum metalens by laser nanoprinting
News

Creating a broadband diffractive graphene orbital angular momentum metalens by laser nanoprinting

October 19, 2023No Comments3 Mins Read
Facebook Twitter Pinterest Telegram LinkedIn Tumblr WhatsApp Email
Creating a broadband diffractive graphene orbital angular momentum metalens by laser nanoprinting
Share
Facebook Twitter LinkedIn Pinterest Telegram Email
Conceptual design of a broadband graphene OAM metalens that focuses different wavelengths at different positions with desired topological charges. Credit: Ultrafast Science (2023). DOI: 10.34133/ultrafastscience.0018

Optical beams carrying orbital angular momentum (OAM) attract widespread attention and play an important role in optical data storage, optical communications, quantum information processing, super-resolution imaging, and optical trapping and manipulation. However, the bulky volume and the complex systems of the conventional OAM beam generators limit their applications in integrated and miniaturized optical or photonic devices.

In a study published in the journal Ultrafast Science, Cao and colleagues used ultrafast laser nanoprinting method to fabricate single ultrathin (200nm) graphene metalenses, which integrate OAM generation and high-resolution focusing functions in a broad bandwidth. The broadband graphene OAM matalenses are expected to be widely applied in miniaturized and integrated photonic devices enabled by OAM beams.

New methods based on periodically arranged 2-dimensional nanostructures, namely, metasurfaces, have proven useful in achieving ultrathin and integratable OAM beam generators for high-quality OAM beams. However, traditional broadband metasurface lenses generally require time-consuming processing and complex iterative design methods to achieve accurate wave front control. In comparison, graphene metalenses with simple designs are enabled by a one-step laser nanoprinting.

Graphene materials can simultaneously manipulate the amplitude and phase of a light beam, allowing high flexibility and accuracy in the lens design to achieve desired focal intensity distributions. Recently, Cao et al. realized a new graphene metalens that can focus broadband OAM beams by ultrafast laser nanoprinting.

A method based on the detour phase technique and unique optical properties of graphene oxide was developed to design the graphene OAM metalenses, which can independently control the focusing properties and the topological charge of the OAM at the same time. The broadband ability of the graphene OAM metalens was demonstrated by focusing optical light beams at different wavelengths.

See also  A simple, scalable method using light to 3D print helical nanostructures

The experimental focusing intensity distributions almost reproduced the theoretical predictions using the Rayleigh–Sommerfeld diffraction theory. The demonstrated ultrathin graphene metalenses provided a simple and cost-effective approach to achieve highly integrated and high-resolution OAM beam focusing. They will find broad applications in optical beam and particle manipulations, data storage, quantum information processing, and mode multiplexing communications in integrated photonic devices.

The resultant graphene metalenses are promising for broad applications in integrated optical and photonic devices using OAM beams. For these applications, a smaller diameter of the doughnut-shaped spot is desired. The methods that improve fabrication, increase the metalens size, or use other 2D materials with higher refractive index contrast are possible to reduce the doughnut-shaped spot size to a certain extent.

However, the minimum diameter of the doughnut-shaped spot of graphene OAM metalens follows the diffraction limit. To further reduce the spot size, the new theory should be proposed, maybe the combination of super oscillation metalens and spiral phase loading is one of the possible methods.

Provided by
Ultrafast Science


Source link

angular broadband creating diffractive Graphene Laser metalens momentum nanoprinting Orbital
Share. Facebook Twitter Pinterest LinkedIn Tumblr Email

Related Posts

Large-aperture MEMS modulator paves way for high-speed, energy-efficient optical communication systems

May 11, 2025

Dual-stage monitoring technique for nanocomposites can streamline manufacturing and property tracking

May 11, 2025

Probing the molecular mechanisms of metastasis

May 10, 2025

AI-powered electronic nose detects diverse scents for health care and environmental applications

May 10, 2025

Microbubble dynamics in boiling water enable precision fluid manipulation

May 9, 2025

Unique molecule may lead to smaller, more efficient computers

May 9, 2025

Comments are closed.

Top Articles

MIT Physicists Forge a Five-Lane Quantum Superhighway for Electrons

New method combines optofluidic force and Raman spectroscopy

News

Market Trends and Growth Potential

Editors Picks

Large-aperture MEMS modulator paves way for high-speed, energy-efficient optical communication systems

May 11, 2025

Dual-stage monitoring technique for nanocomposites can streamline manufacturing and property tracking

May 11, 2025

Probing the molecular mechanisms of metastasis

May 10, 2025

AI-powered electronic nose detects diverse scents for health care and environmental applications

May 10, 2025
About Us
About Us

Your go-to source for the latest nanotechnology breakthroughs. Explore innovations, applications, and implications shaping the future at the molecular level. Stay informed, embrace the nano-revolution.

We're accepting new partnerships right now.

Facebook X (Twitter) Instagram Pinterest
Our Picks

Lipid nanoparticle delivers potential mRNA cure for pre-eclampsia

December 18, 2024

Looking inside a microchip with 4 nanometer precision

August 16, 2024

Precision and Sensitivity in Biological Research

July 22, 2024

Subscribe to Updates

Get the latest creative Nano Tech news from Elnano.com

© 2025 Elnano.com - All rights reserved.
  • Contact
  • Privacy Policy
  • Terms & Conditions

Type above and press Enter to search. Press Esc to cancel.

Cleantalk Pixel