Close Menu
  • News
  • Medical
  • Technology
  • Nanomaterials
  • Research
  • Blog
    • Nasiol.com
  • Contact
    • Tech7685@gmail.com
What's Hot

Dual-stage monitoring technique for nanocomposites can streamline manufacturing and property tracking

May 11, 2025

Probing the molecular mechanisms of metastasis

May 10, 2025

AI-powered electronic nose detects diverse scents for health care and environmental applications

May 10, 2025
Facebook X (Twitter) Instagram
Nanotech – Nanomaterials | Medical | Research | News Stories Updated Daily Nanotech – Nanomaterials | Medical | Research | News Stories Updated Daily
  • News
  • Medical
  • Technology
  • Nanomaterials
  • Research
  • Blog
    • Nasiol.com
  • Contact
    • Tech7685@gmail.com
Facebook X (Twitter) Instagram
Nanotech – Nanomaterials | Medical | Research | News Stories Updated Daily Nanotech – Nanomaterials | Medical | Research | News Stories Updated Daily
Home»News»Construction of dual heterogeneous interface between zigzag-like Mo-MXene nanofibers and small CoNi@NC nanoparticles
News

Construction of dual heterogeneous interface between zigzag-like Mo-MXene nanofibers and small CoNi@NC nanoparticles

April 1, 2024No Comments3 Mins Read
Facebook Twitter Pinterest Telegram LinkedIn Tumblr WhatsApp Email
Construction of dual heterogeneous interface between zigzag-like Mo-MXene nanofibers and small CoNi@NC nanoparticles
Share
Facebook Twitter LinkedIn Pinterest Telegram Email
The zigzag-like Mo-MXene/CoNi-NC material exhibits excellent electromagnetic wave absorption properties due to its perfect balance between dielectric loss and magnetic loss. The material can be interpreted through SEM, 2D RL, and mechanistic analysis. Credit: Journal of Advanced Ceramics, Tsinghua University Press

Two-dimensional transition metal carbides (MXene) possess attractive conductivity and abundant surface functional groups, providing immense potential in the field of electromagnetic wave (EMW) absorption. However, high conductivity and spontaneous aggregation of MXene suffer from limited EMW response. Inspired by dielectric–magnetic synergy effect, the strategy of decorating MXene with magnetic elements is expected to solve this challenge.

Recently, Professor Xiaojun Zeng of Jingdezhen Ceramic University and Professor Bingbing Fan of Zhengzhou University collaborated on the development of a Mo-MXene/CoNi-NC double heterogeneous interface material composed of zigzag-like Mo-MXene nanofibers and CoNi@NC nanoparticles.

Benefiting from the synergistic effect of highly dispersed small CoNi alloy nanoparticles, a three-dimensional conductive network assembled by zigzag-like Mo–MXene NFs, numerous N-doped hollow carbon vesicles, and abundant dual heterogeneous interface, the Mo-MXene/CoNi-NC heterostructure designed provides a strong EMW absorption capability, which provides a great potential for the development of advanced EMW absorption devices based on MXene.

In this work, zigzag-like Mo2TiC2–MXene nanofibers (Mo-based MXene (Mo–MXene) NFs) with cross-linked networks are fabricated by hydrofluoric acid etching and potassium hydroxide shearing processes. Subsequently, a dual heterogeneous interface is constructed by mixing zigzag-like Mo–MXene NFs with small CoNi@NC nanoparticles by the coprecipitation method, ion exchange process, and heat-treatment strategy.

The Mo-MXene/CoNi-NC heterostructures exhibit excellent EMW absorption properties. The paper’s corresponding author, Jingdezhen Ceramic University School of Materials Science and Engineering Professor Xiaojun Zeng, said.

The team published their work in Journal of Advanced Ceramics.

The designed Mo-MXene/CoNi-NC heterostructure provides strong electromagnetic wave absorption capability, with an RL value as high as −68.45 dB at a matching thickness of 4.38 mm. The excellent EMW absorption performance can be attributed to outstanding impedance matching, magnetic loss, dielectric loss, as well as multiple scattering and reflection caused by the unique 3D network structure.

See also  Boron Nitride Nanomaterials in Energy Storage Systems

“Inspired by dielectric–magnetic synergy effect, the strategy of decorating MXene with magnetic elements is expected to resolve the problem of impedance mismatch caused by the high conductivity of MXene,” Xiaojun Zeng said.

The next step is to expand the variety of Mo2TiC2 MXene-based EMW absorption materials by employing various methods for constructing heterogeneous structures and systematically evaluate the absorption mechanism of MXene-based EMW absorption materials. The ultimate goal is to establish a new theoretical system based on Mo2TiC2 MXene heterogeneous structures.

Provided by
Tsinghua University Press


Source link

CoNiNC construction dual heterogeneous interface MoMXene Nanofibers nanoparticles small zigzaglike
Share. Facebook Twitter Pinterest LinkedIn Tumblr Email

Related Posts

Dual-stage monitoring technique for nanocomposites can streamline manufacturing and property tracking

May 11, 2025

Probing the molecular mechanisms of metastasis

May 10, 2025

AI-powered electronic nose detects diverse scents for health care and environmental applications

May 10, 2025

Microbubble dynamics in boiling water enable precision fluid manipulation

May 9, 2025

Unique molecule may lead to smaller, more efficient computers

May 9, 2025

Depositing quantum dots on corrugated chips improves photodetector capabilities

May 8, 2025

Comments are closed.

Top Articles
News

Can Boron Nitride Solve Hydrogen’s Energy Storage Challenge?

News

Reactant enrichment of nanoreactors boosts hydrogenation performance

News

Team develops non-invasive biosensor for early kidney disease detection

Editors Picks

Dual-stage monitoring technique for nanocomposites can streamline manufacturing and property tracking

May 11, 2025

Probing the molecular mechanisms of metastasis

May 10, 2025

AI-powered electronic nose detects diverse scents for health care and environmental applications

May 10, 2025

Microbubble dynamics in boiling water enable precision fluid manipulation

May 9, 2025
About Us
About Us

Your go-to source for the latest nanotechnology breakthroughs. Explore innovations, applications, and implications shaping the future at the molecular level. Stay informed, embrace the nano-revolution.

We're accepting new partnerships right now.

Facebook X (Twitter) Instagram Pinterest
Our Picks

A physics milestone: Miniature particle accelerator works

October 26, 2023

Novel nanosensing technique for quality control of viral vectors in gene therapy

August 13, 2024

Nanorobot hand made of DNA grabs viruses for diagnostics and blocks cell entry

December 8, 2024

Subscribe to Updates

Get the latest creative Nano Tech news from Elnano.com

© 2025 Elnano.com - All rights reserved.
  • Contact
  • Privacy Policy
  • Terms & Conditions

Type above and press Enter to search. Press Esc to cancel.

Cleantalk Pixel