Close Menu
  • News
  • Medical
  • Technology
  • Nanomaterials
  • Research
  • Blog
    • Nasiol.com
  • Contact
    • Tech7685@gmail.com
What's Hot

A recently realized ferroelectric topology in nanomembranes enables light field manipulation

May 21, 2025

How AI is Automating Scanning Probe Microscopy

May 20, 2025

Stability solution brings unique form of carbon closer to practical application

May 20, 2025
Facebook X (Twitter) Instagram
Nanotech – Nanomaterials | Medical | Research | News Stories Updated Daily Nanotech – Nanomaterials | Medical | Research | News Stories Updated Daily
  • News
  • Medical
  • Technology
  • Nanomaterials
  • Research
  • Blog
    • Nasiol.com
  • Contact
    • Tech7685@gmail.com
Facebook X (Twitter) Instagram
Nanotech – Nanomaterials | Medical | Research | News Stories Updated Daily Nanotech – Nanomaterials | Medical | Research | News Stories Updated Daily
Home»News»Catalysis breakthrough yields self-cleaning wall paint that breaks down air pollutants when exposed to sunlight
News

Catalysis breakthrough yields self-cleaning wall paint that breaks down air pollutants when exposed to sunlight

March 30, 2024No Comments4 Mins Read
Facebook Twitter Pinterest Telegram LinkedIn Tumblr WhatsApp Email
Catalysis breakthrough yields self-cleaning wall paint that breaks down air pollutants when exposed to sunlight
Share
Facebook Twitter LinkedIn Pinterest Telegram Email
Credit: ACS Catalysis (2024). DOI: 10.1021/acscatal.3c06203

Typically, beautiful white wall paint does not stay beautiful and white forever. Often, substances from the air accumulate on its surface. This can be a desired effect because it makes the air cleaner for a while—but over time, the color changes and needs to be renewed.

A research team from TU Wien and the Università Politecnica delle Marche (Italy) has now succeeded in developing special titanium oxide nanoparticles that can be added to ordinary, commercially available wall paint to establish self-cleaning power: The nanoparticles are photocatalytically active, they can use sunlight not only to bind substances from the air, but also to decompose them afterwards.

The wall makes the air cleaner—and cleans itself at the same time. Waste was used as the raw material for the new wall paint: metal scrap, which would otherwise have to be discarded, and dried fallen leaves. The study is published in ACS Catalysis.

Modified titanium oxide in the wall paint

A wide variety of pollutants occur in indoor air—from residues of cleaning agents and hygiene products to molecules that are produced during cooking or that are emitted by materials such as leather. In some cases, this can lead to health issues, which is then referred to as “sick building syndrome.”

“For years, people have been trying to use customized wall paints to clean the air,” says Prof. Günther Rupprechter from the Institute of Materials Chemistry at TU Wien. “Titanium oxide nanoparticles are particularly interesting in this context. They can bind and break down a wide range of pollutants.”

See also  Imaging technique shows new details of peptide structures

However, simply adding ordinary titanium oxide nanoparticles to the paint will affect the durability of the paint: just as pollutants are degraded by the nanoparticles, they can also make the paint itself unstable and create cracks. In the worst case, volatile organic compounds can even be released, which in turn can be harmful to health. After a certain time, the paint layer becomes gray and tinted, finally it has to be renewed.

Self-cleaning by light

However, the nanoparticles can clean themselves if they are irradiated with UV light. Titanium oxide is a so-called photocatalyst—a material that enables chemical reactions when exposed to suitable light. The UV radiation creates free charge carriers in the particles, which induce decomposition of the trapped pollutants from air into small parts and their release. In this way, the pollutants are rendered harmless, but do not remain permanently attached to the wall paint. The wall color remains stable in the long term.

In practice, however, this is of little use—after all, it would be tedious to repeatedly irradiate the wall with intense UV light in order to drive the self-cleaning process. “Our goal was therefore to modify these particles in such a way that the photocatalytic effect can also be induced by ordinary sunlight,” explains Rupprechter.

This is achieved by adding certain additional atoms to the titanium oxide nanoparticles, such as phosphorus, nitrogen, and carbon. As a result, the light frequencies that can be harvested by the particles change, and instead of just UV light, photocatalysis is then also triggered by ordinary visible light.

Catalysis breakthrough yields self-cleaning wall paint that breaks down air pollutants when exposed to sunlight
Qaisar Maqbool and Günther Rupprechter. Credit: Vienna University of Technology

96% pollutant removal

See also  Aerospace Innovations: Graphene Self-Cleaning Filtration

“We have now investigated this phenomenon in great detail using a variety of different surface and nanoparticle analysis methods,” says Qaisar Maqbool, the first author of the study. “In this way, we were able to show exactly how these particles behave, before and after they were added to the wall paint.”

The research team mixed the modified titanium oxide nanoparticles with ordinary, commercially available wall paint and rinsed a painted surface with a solution containing pollutants. Subsequently, 96% of the pollutants could be degraded by natural sunlight. The color itself does not change—because the pollutants are not only bound, but also broken down with the help of sunlight.

Waste as a raw material

For the commercial success of such paints, it is also important to avoid expensive raw materials. “In catalysis, for example, precious metals such as platinum or gold are used. In our case, however, elements that are readily available from everywhere are sufficient: To obtain phosphorus, nitrogen and carbon, we have used dried fallen leaves from olive trees, and the titanium for the titanium oxide nanoparticles was obtained from metal waste, which is normally simply thrown away,” says Rupprechter.

This new type of wall paint combines several advantages at the same time: it removes pollutants from the air, it lasts longer than other paints—and it is even more resource-saving in production as it can be obtained from recycled materials. Further experiments are being carried out, and commercialization of the wall paint is intended.

Provided by
Vienna University of Technology


See also  Nanoparticle spray reduces risk of airborne bacterial infections caused by air filtration systems


Source link

Air breaks Breakthrough Catalysis exposed paint pollutants selfcleaning sunlight wall yields
Share. Facebook Twitter Pinterest LinkedIn Tumblr Email

Related Posts

A recently realized ferroelectric topology in nanomembranes enables light field manipulation

May 21, 2025

How AI is Automating Scanning Probe Microscopy

May 20, 2025

Stability solution brings unique form of carbon closer to practical application

May 20, 2025

Flux Tools for Drift Conditions

May 20, 2025

Bringing superconducting nanostructures to 3D

May 20, 2025

Next Generation Magnetic Force Microscopy

May 19, 2025

Comments are closed.

Top Articles
News

Boosting Efficiency and Yield in Ammonia Production

News

How Moiré Excitons Are Advancing Quantum Computing

News

New Material Supercharges Electrostatic Energy Storage – 19x Energy Density

Editors Picks

A recently realized ferroelectric topology in nanomembranes enables light field manipulation

May 21, 2025

How AI is Automating Scanning Probe Microscopy

May 20, 2025

Stability solution brings unique form of carbon closer to practical application

May 20, 2025

Flux Tools for Drift Conditions

May 20, 2025
About Us
About Us

Your go-to source for the latest nanotechnology breakthroughs. Explore innovations, applications, and implications shaping the future at the molecular level. Stay informed, embrace the nano-revolution.

We're accepting new partnerships right now.

Facebook X (Twitter) Instagram Pinterest
Our Picks

Spintronics Technology Meets Brain-Inspired Computing

March 23, 2024

New device harnesses sweat power for fitness trackers

April 24, 2024

Enhancing Food Safety with Nanocoatings

July 19, 2024

Subscribe to Updates

Get the latest creative Nano Tech news from Elnano.com

© 2025 Elnano.com - All rights reserved.
  • Contact
  • Privacy Policy
  • Terms & Conditions

Type above and press Enter to search. Press Esc to cancel.

Cleantalk Pixel