Close Menu
  • News
  • Medical
  • Technology
  • Nanomaterials
  • Research
  • Blog
    • Nasiol.com
  • Contact
    • Tech7685@gmail.com
What's Hot

A new molecular model of bilayer graphene with higher semiconducting properties

May 31, 2025

5 Nanomaterial Innovations That Didn’t Deliver (Yet)

May 30, 2025

Scientists identify new 2D copper boride material with unique atomic structure

May 30, 2025
Facebook X (Twitter) Instagram
Nanotech – Nanomaterials | Medical | Research | News Stories Updated Daily Nanotech – Nanomaterials | Medical | Research | News Stories Updated Daily
  • News
  • Medical
  • Technology
  • Nanomaterials
  • Research
  • Blog
    • Nasiol.com
  • Contact
    • Tech7685@gmail.com
Facebook X (Twitter) Instagram
Nanotech – Nanomaterials | Medical | Research | News Stories Updated Daily Nanotech – Nanomaterials | Medical | Research | News Stories Updated Daily
Home»News»Breakthroughs in Ultrafast Electron Dynamics
News

Breakthroughs in Ultrafast Electron Dynamics

January 5, 2024No Comments4 Mins Read
Facebook Twitter Pinterest Telegram LinkedIn Tumblr WhatsApp Email
Breakthroughs in Ultrafast Electron Dynamics
Share
Facebook Twitter LinkedIn Pinterest Telegram Email

Schematic representation of the experimental setup: Attosecond pulses (violet) eject electrons (green) from a crystal surface. The photoemission electron microscope (cone-shaped instrument at top) examines the rapid movements of the electrons. Credit: Jan Vogelsang, edited

A groundbreaking study by a Swedish-German team has tracked ultrafast electron dynamics with unparalleled precision, opening new avenues in nanomaterial and solar cell research.

When electrons move within a molecule or semiconductor, this occurs on unimaginably short time scales. A Swedish-German research team including physicist Dr. Jan Vogelsang from the University of Oldenburg has now made significant progress towards a better understanding of these ultrafast processes: The researchers were able to track the dynamics of electrons released from the surface of zinc oxide crystals using laser pulses with spatial resolution in the nanometer range and at previously unattained temporal resolution.

Advancements in Electron Behavior Research

With these experiments, the team demonstrated the applicability of a method that could be used to better understand the behavior of electrons in nanomaterials and new types of solar cells, among other applications. Researchers from Lund University, including Professor Dr Anne L’Huillier, one of last year’s three Nobel laureates in physics, were involved in the study, which was published in the science journal Advanced Physics Research.

PEEM Microscope

Looking into the vacuum chamber of the Photoemission Electron Microscope in Lund: The research team used a similar device to study electrons that had been released from a sample using laser pulses. Credit: Jan Vogelsang

In their experiments, the research team combined a special type of electron microscopy known as photoemission electron microscopy (PEEM) with attosecond physics technology. The scientists use extremely short-duration light pulses to excite electrons and record their subsequent behavior. “The process is much like a flash capturing a fast movement in photography,” Vogelsang explained. An attosecond is incredibly short – just a billionth of a billionth of a second.

See also  Precision and Sensitivity in Biological Research

Combining Advanced Techniques for Improved Accuracy

As the team reports, similar experiments had so far failed to attain the temporal accuracy required to track the electrons’ motion. The tiny elementary particles whizz around much faster than the larger and heavier atomic nuclei. In the present study, however, the scientists were able to combine the two technologically demanding techniques, photoemission electron microscopy and attosecond microscopy, without compromising either the spatial or temporal resolution. “We have now finally reached the point where we can use attosecond pulses to investigate in detail the interaction of light and matter at the atomic level and in nanostructures,” said Vogelsang.

Technological Breakthroughs and Future Research

One factor that made this progress possible was the use of a light source that generates a particularly high quantity of attosecond flashes per second – in this case, 200,000 light pulses per second. Each flash released on average one electron from the surface of the crystal, allowing the researchers to study their behavior without them influencing each other. “The more pulses per second you generate, the easier it is to extract a small measurement signal from a dataset,” explained the physicist.

Anne L’Huillier’s laboratory at Lund University (Sweden), where the experiments for the present study were carried out, is one of the few research laboratories worldwide with the technological equipment required for such experiments. Vogelsang, who was a postdoctoral researcher at Lund University from 2017 to 2020, is currently in the process of setting up a similar experimental laboratory at the University of Oldenburg. In the future, the two teams plan to continue their investigations and explore the behavior of electrons in various materials and nanostructures.

See also  Taking A Closer Look at Zeolites With Electron Microscopy

Reference: “Time-Resolved Photoemission Electron Microscopy on a ZnO Surface Using an Extreme Ultraviolet Attosecond Pulse Pair” by Jan Vogelsang, Lukas Wittenbecher, Sara Mikaelsson, Chen Guo, Ivan Sytcevich, Anne-Lise Viotti, Cord L. Arnold, Anne L’Huillier and Anders Mikkelsen, 03 December 2023, Advanced Physics Research.
DOI: 10.1002/apxr.202300122

Vogelsang has headed the Attosecond Microscopy research group at the University of Oldenburg since 2022. The group is funded by the German Research Foundation’s prestigious Emmy Noether Programme.


Source link

Breakthroughs Dynamics electron Ultrafast
Share. Facebook Twitter Pinterest LinkedIn Tumblr Email

Related Posts

A new molecular model of bilayer graphene with higher semiconducting properties

May 31, 2025

5 Nanomaterial Innovations That Didn’t Deliver (Yet)

May 30, 2025

Scientists identify new 2D copper boride material with unique atomic structure

May 30, 2025

Nanoscale biosensor lets scientists monitor molecules in real time

May 30, 2025

How should we govern nanotechnology?

May 29, 2025

The Future of Needle-Free Immunization

May 28, 2025

Comments are closed.

Top Articles
News

Mechanical engineering professor uses coal to create graphene

News

Research highlights the potential of nanopore membranes

News

Lung-targeting lipid nanoparticles with CRISPR components successfully treat cystic fibrosis mouse models

Editors Picks

A new molecular model of bilayer graphene with higher semiconducting properties

May 31, 2025

5 Nanomaterial Innovations That Didn’t Deliver (Yet)

May 30, 2025

Scientists identify new 2D copper boride material with unique atomic structure

May 30, 2025

New contact lenses allow wearers to see in the near-infrared

May 30, 2025
About Us
About Us

Your go-to source for the latest nanotechnology breakthroughs. Explore innovations, applications, and implications shaping the future at the molecular level. Stay informed, embrace the nano-revolution.

We're accepting new partnerships right now.

Facebook X (Twitter) Instagram Pinterest
Our Picks

Scientists Unveil Groundbreaking Design Concept for Next-Generation Quantum Materials

July 25, 2024

Researchers boost signal amplification in perovskite nanosheets

January 11, 2024

Nanozymes drive tumor-specific drug delivery while minimizing toxicity

August 18, 2023

Subscribe to Updates

Get the latest creative Nano Tech news from Elnano.com

© 2025 Elnano.com - All rights reserved.
  • Contact
  • Privacy Policy
  • Terms & Conditions

Type above and press Enter to search. Press Esc to cancel.

Cleantalk Pixel