Close Menu
  • News
  • Medical
  • Technology
  • Nanomaterials
  • Research
  • Blog
    • Nasiol.com
  • Contact
    • Tech7685@gmail.com
What's Hot

Probing the molecular mechanisms of metastasis

May 10, 2025

AI-powered electronic nose detects diverse scents for health care and environmental applications

May 10, 2025

Microbubble dynamics in boiling water enable precision fluid manipulation

May 9, 2025
Facebook X (Twitter) Instagram
Nanotech – Nanomaterials | Medical | Research | News Stories Updated Daily Nanotech – Nanomaterials | Medical | Research | News Stories Updated Daily
  • News
  • Medical
  • Technology
  • Nanomaterials
  • Research
  • Blog
    • Nasiol.com
  • Contact
    • Tech7685@gmail.com
Facebook X (Twitter) Instagram
Nanotech – Nanomaterials | Medical | Research | News Stories Updated Daily Nanotech – Nanomaterials | Medical | Research | News Stories Updated Daily
Home»News»Applications of Boron Nitride-Based Hydrogels
News

Applications of Boron Nitride-Based Hydrogels

September 26, 2023No Comments6 Mins Read
Facebook Twitter Pinterest Telegram LinkedIn Tumblr WhatsApp Email
Applications of Boron Nitride-Based Hydrogels
Share
Facebook Twitter LinkedIn Pinterest Telegram Email

Reinforcing hydrogels with boron nitride nanosheets enhances mechanical, thermal, and self-healing properties, making them versatile platforms for advanced electronics, biomedicine, soft robotics, and environmental devices. This article highlights the diverse applications and future outlook for boron nitride-based hydrogels.

Image Credit: Kateryna Kozlova/Shutterstock.com

Unveiling the Potential of Boron Nitride Hydrogels

Hydrogels are 3D networks of hydrophilic polymers that can absorb and retain large amounts of water due to physical or chemical cross-linking of individual polymer chains. However, poor mechanical strength and thermal conductivity often limit their practical use. An emerging solution is reinforcing hydrogels with nanoparticles to form nanocomposite hydrogels.

In particular, incorporating boron nitride (BN) creates a unique class of mechanically robust and thermally conductive hydrogels with self-healing capabilities. Hexagonal boron nitride nanosheets (BNNS), often regarded as structural and isoelectronic analogs of graphene, boast exceptional thermal and chemical stability and impressive mechanical strength.

This integration enhances thermal conductivity, Young’s modulus, mechanical strength, and self-healing capacity, addressing the limitations of conventional hydrogels.

BN-based nanocomposite hydrogels are synthesized by blending aqueous BN nanoparticle dispersions with monomers or polymeric chains, typically dissolved in water or, in some instances, ethanol.

These nanocomposite hydrogels find applications in various domains, including drug delivery, water treatment, tissue engineering, thermal interface materials, soft robotics, and microlenses.

Biomedical and Drug Delivery Applications

Boron nitride nanocomposite hydrogels have great potential for biomedical applications because of the biocompatibility of hydrogels and BN.

Hydrogels mimic the cellular environment, while BN is biodegradable, and its boron degradation products can promote wound healing and treat prostate cancers. In addition, BN-based nanocomposite hydrogels stimulate the growth of hard tissues by promoting hydroxyapatite deposition, a crucial component of bones and teeth.

See also  Nanotechnology in Cancer Diagnosis

Boron nitride hydrogels have great potential in drug delivery and smart applications, offering precise control over therapeutic agent release by tailoring their properties. Their high specific surface area, hydrophobic surface, and pi systems enable effective drug interactions through electrostatic and pi-pi interactions.

In addition, the choice of BN nanostructure and its functionalization significantly affects its compatibility with therapeutic agents and plays a crucial role in determining drug uptake and release behavior.

Heat Management in Electronics

Boron nitride hydrogels are increasingly valuable in electronic applications, especially for effective heat management. They find essential use as thermal interface materials (TIMs) to protect microelectronics from heat-induced damage by facilitating heat transfer.

These hydrogels are also vital in developing antipyretic pastes, as they can replicate rough surface textures, enabling effective air expulsion from gaps and facilitating efficient thermal transfer between electronic devices and heat sinks. Traditional solid TIMs often struggle to fill these gaps and are not easily recyclable or adaptable to different rough surfaces.

However, the applicability of BN hydrogels may be limited by the operating temperature range of electronics (e.g., 40-60°C for CPUs) since high temperatures can dehydrate hydrogels and alter thermal conductivity.

Various strategies, such as using hybrid hydrogel-elastomer materials and incorporating glycerol, have been explored to overcome this limitation. Glycerol prevents water evaporation and provides anti-freezing properties, expanding the hydrogels’ applicability in electronic settings to a higher temperature range.

Image Credit: MedstockPhotos/Shutterstock.com

Soft Actuators and Wearable Devices

Self-healing relies on the material’s capacity to mend damage, restoring lost properties or performance by leveraging inherent resources. This involves closing cracks through mass transfer and reconnecting broken chemical bonds between separated parts through non-covalent or covalent links.

See also  Analyzing Thermal Responsiveness and Stability of Magnetic Microspheres Across pH Variations

Incorporating boron nitride nanosheet (BNNS) in hydrogels enhances mechanical and functional properties and significantly contributes to the self-healing mechanisms.

This self-healing property is particularly valuable in tissue engineering, emulating natural tissue’s ability to repair spontaneously. It also finds application in scenarios involving cyclic mechanical loadings, such as soft actuators and wearable devices, where self-healing capability is advantageous.

Environmental Applications: Swelling and Water treatment

Boron Nitride Hydrogels have versatile applications in environmental contexts, particularly in water treatment. Their ability to interact effectively with organic pollutants like dyes and oils and inorganic pollutants such as heavy metal ions makes them attractive for pollutant removal from water.

A study published in materials demonstrated that amino functionalized boron nitride nanosheets/poly(N-isopropyl acrylamide) (NH2-BNNS/PNIPAM) hydrogel has high absorption capacity for hydrophilic dyes and diesel, as it completely removed these pollutants after hot water immersion. This highlights their value in environmental applications, specifically swelling and water treatment.

Microwave Electromagnetic Absorption

Wang et al. offered an alternative application for BN composites, emphasizing their potential to enhance microwave electromagnetic absorption. The researchers suggest employing hydrogel/boron nitride composites to create 3D, self-supporting structures that improve electromagnetic microwaves’ incidence and reflective paths.

This application aims to address electromagnetic pollution generated by various electronic devices, with the noble goal of mitigating health issues.

Embracing a Promising Future with Boron Nitride Hydrogels

Boron Nitride Hydrogels offer unique properties, from enhancing thermal conductivity and mechanical strength through covalent bonding with BN nanosheets (BNNS) to advancing self-healing capabilities via pi-pi interactions.

These hydrogels find applications in soft robotics, therapeutic agent delivery, and pollutant removal, where interactions with solutes are crucial. The hydrophobic nature of BN nanostructures and potential electrostatic and pi-pi interactions open doors to improved compatibility with hydrophobic drugs and pollutants, especially when functionalized.

See also  Laser-induced hydrothermal growth for electrocatalytic applications

The future of BN-nanocomposite hydrogels lies in continued innovation in BN nanostructure functionalization, fabrication, and synergistic combination with other nanofillers. Additionally, progress in double network hydrogels, supramolecular hydrogels, stimuli-responsive hydrogels, and cross-linking chemistry will further expand these remarkable materials’ range of properties and applications.

In essence, Boron Nitride Hydrogels hold immense potential to revolutionize many industries, urging us to embark on a journey of exploration and innovation to harness their full capabilities.

See More: Spherical Nanoindentation of Polyacrylamide Hydrogels

References and Further Reading

Lima, D. M., et al. (2021). Boron nitride-based nanocomposite hydrogels: Preparation, properties and applications. Soft Matter, 17(17), pp. 4475-4488. doi.org/10.1039/D1SM00212K

Hu, X., et al. (2016). Aqueous compatible boron nitride nanosheets for high-performance hydrogels. Nanoscale, 8(7), pp. 4260-4266. doi.org/10.1039/C5NR07578E

Hongbo, J., et al. (2017) Highly flexible and self-healable thermal interface material based on boron nitride nanosheets and a dual cross-linked hydrogel. ACS Applied Materials & Interfaces 9(11), pp. 10078-10084. doi.org/10.1021/acsami.6b16195

Xue, S., et al. (2018). Boron nitride nanosheets/PNIPAM hydrogels with improved thermo-responsive performance. Materials, 11(7), p. 1069. doi.org/10.3390/ma11071069

Wang, F., et al. (2021). Boron nitride nanocomposites for microwave absorption: a review. Materials Today Nano, 13, p. 100108. doi.org/10.1016/j.mtnano.2020.100108

Bahram, M., et al. (2016). An Introduction to Hydrogels and Some Recent Applications. InTech. doi.org/10.5772/64301

Disclaimer: The views expressed here are those of the author expressed in their private capacity and do not necessarily represent the views of AZoM.com Limited T/A AZoNetwork the owner and operator of this website. This disclaimer forms part of the Terms and conditions of use of this website.

Source link

Applications Boron hydrogels nitridebased
Share. Facebook Twitter Pinterest LinkedIn Tumblr Email

Related Posts

Probing the molecular mechanisms of metastasis

May 10, 2025

AI-powered electronic nose detects diverse scents for health care and environmental applications

May 10, 2025

Microbubble dynamics in boiling water enable precision fluid manipulation

May 9, 2025

Unique molecule may lead to smaller, more efficient computers

May 9, 2025

Depositing quantum dots on corrugated chips improves photodetector capabilities

May 8, 2025

Ultrasonic nanocrystal surface modification restores stainless steel’s corrosion resistance

May 7, 2025

Comments are closed.

Top Articles
News

What is a Molecular Switch?

News

Aerosol jet printing could revolutionize microfluidic device fabrication

News

Why is Boron Nitride (BN) Used in Polymer Nanocomposites?

Editors Picks

Probing the molecular mechanisms of metastasis

May 10, 2025

AI-powered electronic nose detects diverse scents for health care and environmental applications

May 10, 2025

Microbubble dynamics in boiling water enable precision fluid manipulation

May 9, 2025

Unique molecule may lead to smaller, more efficient computers

May 9, 2025
About Us
About Us

Your go-to source for the latest nanotechnology breakthroughs. Explore innovations, applications, and implications shaping the future at the molecular level. Stay informed, embrace the nano-revolution.

We're accepting new partnerships right now.

Facebook X (Twitter) Instagram Pinterest
Our Picks

Light Can Vaporize Water Without Heat

May 5, 2024

Masquerading moth deploys specialized nanostructures to evade predators

February 22, 2025

Exploring optical cooling in semiconductor quantum dots

December 3, 2024

Subscribe to Updates

Get the latest creative Nano Tech news from Elnano.com

© 2025 Elnano.com - All rights reserved.
  • Contact
  • Privacy Policy
  • Terms & Conditions

Type above and press Enter to search. Press Esc to cancel.

Cleantalk Pixel