Close Menu
  • News
  • Medical
  • Technology
  • Nanomaterials
  • Research
  • Blog
    • Nasiol.com
  • Contact
    • Tech7685@gmail.com
What's Hot

Large-aperture MEMS modulator paves way for high-speed, energy-efficient optical communication systems

May 11, 2025

Dual-stage monitoring technique for nanocomposites can streamline manufacturing and property tracking

May 11, 2025

Probing the molecular mechanisms of metastasis

May 10, 2025
Facebook X (Twitter) Instagram
Nanotech – Nanomaterials | Medical | Research | News Stories Updated Daily Nanotech – Nanomaterials | Medical | Research | News Stories Updated Daily
  • News
  • Medical
  • Technology
  • Nanomaterials
  • Research
  • Blog
    • Nasiol.com
  • Contact
    • Tech7685@gmail.com
Facebook X (Twitter) Instagram
Nanotech – Nanomaterials | Medical | Research | News Stories Updated Daily Nanotech – Nanomaterials | Medical | Research | News Stories Updated Daily
Home»News»Anisotropic plasmon engineering unlocks multilevel polarized upconversion
News

Anisotropic plasmon engineering unlocks multilevel polarized upconversion

January 20, 2024No Comments3 Mins Read
Facebook Twitter Pinterest Telegram LinkedIn Tumblr WhatsApp Email
Anisotropic plasmon engineering unlocks multilevel polarized upconversion
Share
Facebook Twitter LinkedIn Pinterest Telegram Email
(A) shows the schematic of the hybrid system comprising metal-insulator-metal nanoantennas and NaYF4:Yb/Er upconversion nanoparticles (UCNPs). (B) presents the simplified energy level diagram depicting how anisotropic gap-plasmon modes interact with the quantum energy levels of UCNPs. The modification of upconversion luminescence polarization (parallel or anisotropic) depends on the localized surface plasmon resonance (LSPR) wavelength relative to the excitation (Ex) and emission (Em) transitions of UCNPs. Credit: Xu Jiahui

National University of Singapore (NUS) researchers have introduced an upconversion plasmonphore platform to enable precise control over the polarization of isotropic upconversion nanoparticles (UCNPs). This is achieved by coupling upconversion activators with carefully designed anisotropic gap plasmon mode-supported metasurfaces.

Photon-plasmon coupling in hybrid systems is a powerful tool for investigating light-matter interactions at the nanoscale, with potential applications in various fields, including miniaturized solid-state lasers, ultracompact spectrometers, on-chip molecular sensing and polarimetric imaging. Lanthanide-doped UCNPs are particularly promising as quantum light sources due to their distinct emission peaks, large anti-Stokes shift and excellent photostability.

The characteristic spectroscopic fingerprints provided by these emission peaks make it easier to accurately identify information. While upconversion hybrid systems have been explored to enhance photoluminescence and decay dynamics through surface plasmon-photon coupling, the crystal lattice symmetry of small UCNPs makes it difficult to achieve polarization anisotropy. Also, control of the light polarization is essential for diverse applications, such as information encoding, display technology and biological sensing.

A research team led by Professor Liu Xiaogang from the Department of Chemistry, NUS, has conceived an approach to achieve precise polarization control over isotropic UCNPs by coupling upconversion activators with complex nanostructures, known as anisotropic gap plasmon mode-supported metasurfaces. The research is published in the journal Chem.

By employing metallic rod-like antennas, the researchers were able to control the light polarization of these isotropic UCNPs in a way that is similar to tuning a radio to different radio stations. This allowed them to control the light polarization of these isotropic UCNPs from the visible to near-infrared range, overcoming the constraints posed by their crystalline symmetry.

See also  MRI for Molecules Unlocks Secrets of the Atomic World

The metal-insulator-metal design ensures that there are strong double resonant modes in orthogonal directions with minimal interference with each other. It also decouples the processes involved in light excitation and emission.

By using both far-field excitation and near-field electromagnetic interference, the isotropic UCNPs can be controlled to produce periodical variations in emission amplitude, with a large excitation polarization sensitivity of up to 83%.

The research team further explored how the local density of light particles around the antennas affects the way energy is released from the hybrid nanoplatform. By exciting the system linearly, this hybrid nanoplatform can switch between four upconversion polarization states, allowing multiple levels of light output in parallel or orthogonal polarization configurations.

Their numerical investigation further shed light on how the anisotropic plasmon modes selectively affect the polarization state of the emitted light. Specifically, when the excitation enhancement factors are much larger than the emission enhancement factors, the upconversion polarization state is determined by the excitation polarization, leading to parallel polarization characteristics.

Conversely, when the emission enhancement factors are comparable to the excitation enhancement factors, the coupled upconversion emitters produced emitted light with anisotropic properties.

Prof Liu said, “The multilevel upconversion polarizations could pave the way for innovative photonic systems, offering the flexibility to tailor light frequencies and directions that use light in unique ways. This opens up exciting prospects for developing compact devices that leverage light in novel ways for advanced photonics.”

Provided by
National University of Singapore



Source link

Anisotropic engineering multilevel plasmon polarized Unlocks upconversion
Share. Facebook Twitter Pinterest LinkedIn Tumblr Email

Related Posts

Large-aperture MEMS modulator paves way for high-speed, energy-efficient optical communication systems

May 11, 2025

Dual-stage monitoring technique for nanocomposites can streamline manufacturing and property tracking

May 11, 2025

Probing the molecular mechanisms of metastasis

May 10, 2025

AI-powered electronic nose detects diverse scents for health care and environmental applications

May 10, 2025

Microbubble dynamics in boiling water enable precision fluid manipulation

May 9, 2025

Unique molecule may lead to smaller, more efficient computers

May 9, 2025

Comments are closed.

Top Articles
News

Team develops novel sponge-based triboelectric nanogenerator for corrosion protection in transportation systems

News

How Does Nanoparticle Tracking Analysis Work?

Liquid nanofoam innovation designed to protect the brain now tested on internal organs

Editors Picks

Large-aperture MEMS modulator paves way for high-speed, energy-efficient optical communication systems

May 11, 2025

Dual-stage monitoring technique for nanocomposites can streamline manufacturing and property tracking

May 11, 2025

Probing the molecular mechanisms of metastasis

May 10, 2025

AI-powered electronic nose detects diverse scents for health care and environmental applications

May 10, 2025
About Us
About Us

Your go-to source for the latest nanotechnology breakthroughs. Explore innovations, applications, and implications shaping the future at the molecular level. Stay informed, embrace the nano-revolution.

We're accepting new partnerships right now.

Facebook X (Twitter) Instagram Pinterest
Our Picks

Depositing quantum dots on corrugated chips improves photodetector capabilities

May 8, 2025

New microscope shows live imaging of nanoscale biological process for the first time

November 19, 2024

X-photon 3D nanolithography

September 7, 2023

Subscribe to Updates

Get the latest creative Nano Tech news from Elnano.com

© 2025 Elnano.com - All rights reserved.
  • Contact
  • Privacy Policy
  • Terms & Conditions

Type above and press Enter to search. Press Esc to cancel.

Cleantalk Pixel