Close Menu
  • News
  • Medical
  • Technology
  • Nanomaterials
  • Research
  • Blog
    • Nasiol.com
  • Contact
    • Tech7685@gmail.com
What's Hot

Rapid nanoparticle simulations could boost efforts to combat air pollution

June 1, 2025

New tool reveals how DNA nanostructures interact with cell membranes

June 1, 2025

New insights show universal applicability of carbyne as a sensor

May 31, 2025
Facebook X (Twitter) Instagram
Nanotech – Nanomaterials | Medical | Research | News Stories Updated Daily Nanotech – Nanomaterials | Medical | Research | News Stories Updated Daily
  • News
  • Medical
  • Technology
  • Nanomaterials
  • Research
  • Blog
    • Nasiol.com
  • Contact
    • Tech7685@gmail.com
Facebook X (Twitter) Instagram
Nanotech – Nanomaterials | Medical | Research | News Stories Updated Daily Nanotech – Nanomaterials | Medical | Research | News Stories Updated Daily
Home»Medical»An evaluation of the main nanotechnology approaches to improve the therapeutic potential of polyphenols against cancer
Medical

An evaluation of the main nanotechnology approaches to improve the therapeutic potential of polyphenols against cancer

August 12, 2023No Comments5 Mins Read
Facebook Twitter Pinterest Telegram LinkedIn Tumblr WhatsApp Email
An evaluation of the main nanotechnology approaches to improve the therapeutic potential of polyphenols against cancer
Share
Facebook Twitter LinkedIn Pinterest Telegram Email

In a recent study published in the Nutrients Journal, researchers comprehensively evaluated all nanotechnology-based approaches used to improve the therapeutic effectiveness of polyphenols against cancer.

Study: Recent Progress in Nanotechnology Improving the Therapeutic Potential of Polyphenols for Cancer. Image Credit: metamorworks/Shutterstock.com

Background

The study summarized the recent advancements in developing nano-carried polyphenols with the potential for cancer therapy based on in vitro study results and preclinical trial data.

Additionally, the researchers addressed the use of polyphenol co-delivery systems, which decrease the adverse side effects of cancer treatment. Finally, they described future trends in polyphenol-loaded nanotechnology-based delivery systems for cancer treatment and their outlook for clinical research.

Polyphenols are bioactive agents present in many plants, fruits, and vegetables. Studies have highlighted that some polyphenols, such as curcumin, epigallocatechin-3-gallate (EGCG), quercetin, and resveratrol, have antiproliferative activity, essential to fight cancerous cells.

These polyphenolic compounds also have antioxidant properties and pro-oxidant, anti-angiogenic, and anti-metastatic effects.

Despite vast inherent potential against cancer, low solubility and poor bioavailability of polyphenols hamper their gastrointestinal (GI) absorption. In this regard, scientists have proposed using nanoencapsulation in delivery systems to improve the effectiveness of polyphenols.

About the study

In the present study, researchers described four main classes of nanocarriers/nanomaterials, polymeric, lipid-based, inorganic, and carbon-based. Many in vitro studies and animal preclinical tests have already elucidated in vivo anticancer properties of these materials. 

Regardless of type, all these materials confer protection to polyphenols against the hostile environment of the human digestive system, thus, facilitating a controlled and targeted delivery to the target tissue of a cancer patient.

See also  Nanotechnology in Aerospace Materials

More importantly, they interfere at a specific stage of the carcinogenic process to inhibit cell proliferation and induce apoptosis in cancerous cells.

The anticancer potential of four different polyphenols: Curcumin, EGCG, Quercetin, and Resveratrol

Found in Curcuma longa L. (turmeric), curcumin has remarkable antitumor properties evidenced in various studies. Kazemi-Lomedasht et al. showed the anticancer effects of curcumin against T47D breast cancer cells. Its extract (concentration 22 μM) increased the inhibition of the telomerase gene expression in the T47D cell line and reduced cell viability by 50% in 48 hours.

In mice, researchers fed turmeric extract at a dosage of 500 mg/kg per day by oral gavage for seven weeks. It decreased the expression levels of several cytokines, including interleukin (IL)-1β, and IL-6, which suppressed the tumorigenesis induced by azoxymethane–dextran sodium sulfate (AOM-DSS). It also decreased the number and size of colorectal tumors.

EGCG, found in green tea (Camellia sinensis), suppressed the proliferation of H1299 lung cancer cells in concentrations >20 μM in a study by Chen et al. (2020). Its LEGCG derivate showed cell apoptosis rates of 8.63%, 12.78%, 25.62%, and 58.51% at concentrations zero, 10, 20, and 40 μg/mL, respectively. 

Resveratrol, found in grapes, berries, and peanuts, showed a remarkable decrease in cell viability for A549 and H1299 lung cancer cell lines at concentrations of 50 μM and 25 μM, respectively, after 24 hours in a study by Liang et al. (2023).

It disturbed the lung cancer cellular homeostasis by destroying the cellular pool of antioxidants often active in cancer to increase the reactive oxygen species (ROS) production.

See also  Light-driven bacteria could be used to target and kill cancer cells

Finally, the authors described that several studies have evaluated different concentrations of quercetin and found that this unique compound has a high potential to fight different types of cancers, including breast, colorectal, cervical, and lung.

Recently, Hashemzaei et al. (2017) evaluated the effect of quercetin in preclinical studies in mice. The treatment comprised 50, 100, and 200 mg/kg concentrations of quercetin and 5% dextrose for the control group. After 18 days, this treatment shrunk breast tumor sizes and improved survival rates in the group treated with a 200 mg/kg dosage. 

Further, the researchers explored all functional nanomaterials currently used for encapsulating polyphenols for cancer based on their stability, loading capacity, release, and targeting.

They observed that polymeric nanoparticles, e.g., micelles and nanospheres exhibited a higher self-assembling capacity under certain pH conditions, more biodegradability, and persistent drug delivery.

Likewise, they noted that lipid-based nanomaterials, such as niosomes and liposomes, showed potential as promising nanocarriers due to their non-toxic nature and efficient cell penetration potential that facilitated targeted polyphenol delivery. 

However, inorganic nanoparticles, e.g., gold nanoparticles, quantum dots, carbon-based nanomaterials, such as graphene and its derivatives, and fullerene, showed limited potential as nanocarriers due to toxicity issues and a low polyphenol loading efficacy.

Future perspective

To summarize, the researchers identified that clinical applications of polyphenol delivery systems for cancer therapy are wider than perceived before. The ability to selectively target cancer cells, fewer side effects, and increased therapeutic efficacy might help devise efficient and personalized cancer therapies in the future.

However, improving these nanotechnology-based delivery systems concerning clinical efficacy is paramount.

See also  How Does Moore's Law Relate to Nanotechnology?

More importantly, there is a need for additional studies to enlarge the knowledge base of polyphenol-loaded nanotechnology-based delivery systems, with a razor-sharp focus on their pharmacokinetics, bioavailability & compatibility, toxicity, mechanisms of action, and establish their in vivo efficacy.

Source link

approaches cancer evaluation improve main Nanotechnology polyphenols Potential therapeutic
Share. Facebook Twitter Pinterest LinkedIn Tumblr Email

Related Posts

How should we govern nanotechnology?

May 29, 2025

Biosensor uses pH-responsive DNA nanoswitches for highly sensitive bladder cancer detection in urine

May 24, 2025

Structure dictates effectiveness and safety in nanomedicine, driving therapeutic innovation, say scientists

May 7, 2025

In What Ways Can Nanosensors Be Used to Detect Cancer?

April 22, 2025

AI combined with nanotech can detect oral cancer earlier

April 21, 2025

Engineers develop a way to mass manufacture nanoparticles that deliver cancer drugs directly to tumors

April 15, 2025

Comments are closed.

Top Articles
News

Scientists develop tunable colored films for displays and sensors

News

MIT Pioneers Quantum Light Source for Optical Quantum Computers and Teleportation Devices for Communication

News

Boosted exciton mobility approaching the Mott-Ioffe-Regel limit in a 2D Ruddlesden-Popper perovskite

Editors Picks

Rapid nanoparticle simulations could boost efforts to combat air pollution

June 1, 2025

New tool reveals how DNA nanostructures interact with cell membranes

June 1, 2025

New insights show universal applicability of carbyne as a sensor

May 31, 2025

A new molecular model of bilayer graphene with higher semiconducting properties

May 31, 2025
About Us
About Us

Your go-to source for the latest nanotechnology breakthroughs. Explore innovations, applications, and implications shaping the future at the molecular level. Stay informed, embrace the nano-revolution.

We're accepting new partnerships right now.

Facebook X (Twitter) Instagram Pinterest
Our Picks

A nanoscale look at how shells and coral form reveals that biomineralization is more complex than imagined

April 2, 2024

Nanoscale wrinkles on films can display or conceal vibrant color patterns

April 4, 2025

Nanotechnology in the fight against viruses

September 27, 2023

Subscribe to Updates

Get the latest creative Nano Tech news from Elnano.com

© 2025 Elnano.com - All rights reserved.
  • Contact
  • Privacy Policy
  • Terms & Conditions

Type above and press Enter to search. Press Esc to cancel.

Cleantalk Pixel