Close Menu
  • News
  • Medical
  • Technology
  • Nanomaterials
  • Research
  • Blog
    • Nasiol.com
  • Contact
    • Tech7685@gmail.com
What's Hot

Ballistic electrons chart a new course for next-gen terahertz devices

June 6, 2025

‘Stealthy’ lipid nanoparticles give mRNA vaccines a makeover

June 5, 2025

Single-layer waveguide display uses achromatic metagratings for more compact augmented reality eyewear

June 5, 2025
Facebook X (Twitter) Instagram
Nanotech – Nanomaterials | Medical | Research | News Stories Updated Daily Nanotech – Nanomaterials | Medical | Research | News Stories Updated Daily
  • News
  • Medical
  • Technology
  • Nanomaterials
  • Research
  • Blog
    • Nasiol.com
  • Contact
    • Tech7685@gmail.com
Facebook X (Twitter) Instagram
Nanotech – Nanomaterials | Medical | Research | News Stories Updated Daily Nanotech – Nanomaterials | Medical | Research | News Stories Updated Daily
Home»News»An argument for applying medical insights to agriculture
News

An argument for applying medical insights to agriculture

June 13, 2024No Comments4 Mins Read
Facebook Twitter Pinterest Telegram LinkedIn Tumblr WhatsApp Email
An argument for applying medical insights to agriculture
Share
Facebook Twitter LinkedIn Pinterest Telegram Email
Design of NC properties (for example, size, rigidity and aspect ratio). Biorecognition molecules and surface chemistries determine the uptake, translocation and targeting of NCs in plants, as well as AA release mechanisms. Data-driven artificial intelligence (for example, machine learning) strategies will need to work closely with experimental and modeling approaches to rapidly map relationships between NC structure and its function and identify the most promising unexplored NC candidates for precision delivery in plants. Credit: Nature Nanotechnology (2024). DOI: 10.1038/s41565-024-01667-5

Advanced technologies enable the controlled release of medicine to specific cells in the body. Scientists argue these same technologies must be applied to agriculture if growers are to meet increasing global food demands.

In a Nature Nanotechnology journal review paper, scientists from UC Riverside and Carnegie Mellon University highlight some of the best-known strategies for improving agriculture with nanotechnology.

Nanotechnology is an umbrella term for the study and design of microscopically small things. How small? A nanometer is one billionth of a meter, or about 100,000 times smaller than the width of a human hair. Using nanotechnology, drugs can now be delivered where they’re most needed. But these insights have yet to be applied to plant science on a large scale.

“There are studies predicting we will need to increase food production by up to 60% in 2050 relative to 2020 levels. Right now, we are trying to do that through inefficient agrochemical delivery,” said Juan Pablo Giraldo, UCR associate professor and paper co-corresponding author.

“Half of all the fertilizer applied on farms is lost in the environment and pollutes the groundwater. In the case of commonly used pesticides, it’s even worse. Only 5% reach their intended targets. The rest ends up contaminating the environment. There is a lot of room for improvement,” Giraldo said.

Currently, agriculture accounts for up to 28% of global greenhouse gas emissions. This, in addition to a range of other factors from extreme weather events to rampant crop pests and rapidly degrading soil, underlines the need for new agricultural practices and technologies.

How medical models can transform agriculture
Carnegie Mellon’s Greg Lowry studies plant nanobiotechnology in his environmental engineering lab, looking at using nanocarriers to make plants more resilient. Credit: Carnegie Mellon College of Engineering

In their review, the researchers highlight specific approaches borrowed from nanomedicine that could be used to deliver pesticides, herbicides, and fungicides to specific biological targets.

See also  Advances in nanoscale force measurement opens doors to unprecedented biological insights

“We are pioneering targeted delivery technologies based on coating nanomaterials with sugars or peptides that recognize specific proteins on plant cells and organelles,” Giraldo said. “This allows us to take the existing molecular machinery of the plant and guide desired chemicals to where the plant needs it, for example the plant vasculature, organelles, or sites of plant pathogen infections.”

Doing this could make plants more resilient to disease and harmful environmental factors like extreme heat or high salt content in soil. This type of delivery would also be a much greener approach, with fewer off-target effects in the environment.

Another strategy discussed in the paper is using artificial intelligence and machine learning to create a “digital twin.” Medical researchers use computational models or “digital patients” to simulate how medicines interact with and move within the body. Plant researchers can do the same to design nanocarrier molecules that deliver nutrients or other agrochemicals to plant organs where they’re most needed.

“It’s like J.A.R.V.I.S. (Just A Rather Very Intelligent System) from the film Iron Man. Essentially an artificial intelligence guide to help design nanoparticles with controlled delivery properties for agriculture,” Giraldo said. “We can follow up these twin simulations with real-life plant experiments for feedback on the models.”

“Nano-enabled precision delivery of active agents in plants will transform agriculture, but there are critical technical challenges that we must first overcome to realize the full range of its benefits,” said Greg Lowry, Carnegie Mellon engineering professor and co-corresponding author of the review paper.

“I’m optimistic about the future of plant nanobiotechnology approaches and the beneficial impacts it will have on our ability to sustainably produce food.”

See also  New insights show universal applicability of carbyne as a sensor

Provided by
University of California – Riverside



Source link

Agriculture Applying argument Insights Medical
Share. Facebook Twitter Pinterest LinkedIn Tumblr Email

Related Posts

Ballistic electrons chart a new course for next-gen terahertz devices

June 6, 2025

‘Stealthy’ lipid nanoparticles give mRNA vaccines a makeover

June 5, 2025

Single-layer waveguide display uses achromatic metagratings for more compact augmented reality eyewear

June 5, 2025

2D hybrid material integrates graphene and silica glass for next-generation electronics

June 4, 2025

Zeolite nanopore model links crystal size to metal cluster migration and catalyst performance

June 4, 2025

Spontaneous symmetry breaking in electron systems proves elusive

June 3, 2025

Comments are closed.

Top Articles
News

Researchers develop minimal nanozymes with carbon dioxide capture capacity

News

‘Bliss’ compound may hold out hope for autoimmune skin disease

News

AI enhances chemical analysis at the nanoscale

Editors Picks

Ballistic electrons chart a new course for next-gen terahertz devices

June 6, 2025

‘Stealthy’ lipid nanoparticles give mRNA vaccines a makeover

June 5, 2025

Single-layer waveguide display uses achromatic metagratings for more compact augmented reality eyewear

June 5, 2025

2D hybrid material integrates graphene and silica glass for next-generation electronics

June 4, 2025
About Us
About Us

Your go-to source for the latest nanotechnology breakthroughs. Explore innovations, applications, and implications shaping the future at the molecular level. Stay informed, embrace the nano-revolution.

We're accepting new partnerships right now.

Facebook X (Twitter) Instagram Pinterest
Our Picks

Scientists learn how to make nanotubes that point in one direction

December 24, 2024

The Global Nanomedicine Market: Key Players and Technologies

October 23, 2024

How “Smart Rust” Nanoparticles Are Revolutionizing Water Cleanup

August 21, 2023

Subscribe to Updates

Get the latest creative Nano Tech news from Elnano.com

© 2025 Elnano.com - All rights reserved.
  • Contact
  • Privacy Policy
  • Terms & Conditions

Type above and press Enter to search. Press Esc to cancel.

Cleantalk Pixel