Close Menu
  • News
  • Medical
  • Technology
  • Nanomaterials
  • Research
  • Blog
    • Nasiol.com
  • Contact
    • Tech7685@gmail.com
What's Hot

A leap toward clean energy storage

May 25, 2025

Biosensor uses pH-responsive DNA nanoswitches for highly sensitive bladder cancer detection in urine

May 24, 2025

Photoresponsive cages show promise for tunable supramolecular electronics

May 24, 2025
Facebook X (Twitter) Instagram
Nanotech – Nanomaterials | Medical | Research | News Stories Updated Daily Nanotech – Nanomaterials | Medical | Research | News Stories Updated Daily
  • News
  • Medical
  • Technology
  • Nanomaterials
  • Research
  • Blog
    • Nasiol.com
  • Contact
    • Tech7685@gmail.com
Facebook X (Twitter) Instagram
Nanotech – Nanomaterials | Medical | Research | News Stories Updated Daily Nanotech – Nanomaterials | Medical | Research | News Stories Updated Daily
Home»News»Agarose-based method shows potential in understanding extracellular vesicles’ role in cancer metastasis
News

Agarose-based method shows potential in understanding extracellular vesicles’ role in cancer metastasis

November 8, 2023No Comments2 Mins Read
Facebook Twitter Pinterest Telegram LinkedIn Tumblr WhatsApp Email
Agarose-based method shows potential in understanding extracellular vesicles’ role in cancer metastasis
Share
Facebook Twitter LinkedIn Pinterest Telegram Email
Schematic representation of the agarose spot migration. Credit: IGTP

A collaborative study led by researchers from Germans Trias i Pujol Research Institute has revealed the promising possibilities of using an agarose spot migration assay to examine the ability of extracellular vesicles to attract other cells in a controlled environment. The study has been recently published in the journal BMC Biology.

Extracellular vesicles (EVs) are nanoparticles released by cells which are present in various biological processes, including cellular communication. Recent research indicates that cancer-related EVs play an important role in forming a pre-metastatic niche (PMN)—a preparatory area that allows spreading tumor cells to establish and grow—by recruiting cells from the original tumor.

It is vital to understand and measure how these cancer-EVs can prompt cell migration and recruitment, both for developing cell-free therapeutic approaches and for improving our knowledge of cancer metastasis. In this context, classical in vitro (lab-based) migration assays do not fully capture the true ability of EVs to guide cells chemically to a new location.

The study led by researchers from IGTP’s research groups Innovation in Vesicles and Cells for Application in Therapy (IVECAT), Badalona Applied Research Group in Oncology (B·ARGO) and Resistance, Chemotherapy and Predictive Biomarkers (RCPB) emphasizes how EVs can influence cancer metastasis. The research team adapted a laboratory method known as the agarose spot migration assay to EV requirements, which measures how well these tiny particles can attract other cells in a controlled environment.

Agarose-based method shows potential in understanding extracellular vesicles' role in cancer metastasis
High pro-metastatic PC3 and low pro-metastatic LNCaP cell lines recruitment by their own EVs embedded in agarose spots. Credit: IGTP

Their analysis, including still images and time-lapse videos among others, revealed that EVs differ in their ability to recruit endothelial cells. More importantly, they were able to identify a greater recruitment capability in EVs from highly metastatic PC3 cancer cells compared to those from less metastatic LNCaP cells.

See also  New method transforms carbon nanoparticles from emissions into renewable energy catalysts

The first author of the study, Marta Clos-Sansalvador, a predoctoral student from IGTP’s group IVECAT, explains that “the agarose spot migration assay may offer a diversity of measurements and migration settings not provided by classical migration assays, like scratch assays, and reveal its potential use in the EV and cancer metastasis fields.” Clos-Sansalvador also points out the assay’s practicality: “EV-adapted agarose spot migration assay is a simple, low-cost, and versatile technique that can be easily adapted to most laboratories”.

Provided by
Germans Trias i Pujol Research Institute


Source link

Agarosebased cancer extracellular metastasis method Potential Role shows understanding vesicles
Share. Facebook Twitter Pinterest LinkedIn Tumblr Email

Related Posts

A leap toward clean energy storage

May 25, 2025

Biosensor uses pH-responsive DNA nanoswitches for highly sensitive bladder cancer detection in urine

May 24, 2025

Photoresponsive cages show promise for tunable supramolecular electronics

May 24, 2025

Targeted nanoparticles show promise for more effective antifungal treatments

May 23, 2025

Dynamic visualizations expose how domain walls shift in ferroelectrics

May 23, 2025

Nanoscale spectroscopy detects vibrational signals from molecules in confined gaps

May 22, 2025

Comments are closed.

Top Articles
News

Simulating how electrons move through biological nanowires

News

Hidden transport pathways in graphene confirmed, paving the way for next-generation device design

News

Nanotechnology in Biodiversity Conservation

Editors Picks

A leap toward clean energy storage

May 25, 2025

Biosensor uses pH-responsive DNA nanoswitches for highly sensitive bladder cancer detection in urine

May 24, 2025

Photoresponsive cages show promise for tunable supramolecular electronics

May 24, 2025

Targeted nanoparticles show promise for more effective antifungal treatments

May 23, 2025
About Us
About Us

Your go-to source for the latest nanotechnology breakthroughs. Explore innovations, applications, and implications shaping the future at the molecular level. Stay informed, embrace the nano-revolution.

We're accepting new partnerships right now.

Facebook X (Twitter) Instagram Pinterest
Our Picks

In What Ways Can Nanosensors Be Used to Detect Cancer?

April 22, 2025

Tiny chips promise swift disease diagnosis from a single breath

December 23, 2024

Quantum dots enhance spin chemistry in radical pairs

January 13, 2025

Subscribe to Updates

Get the latest creative Nano Tech news from Elnano.com

© 2025 Elnano.com - All rights reserved.
  • Contact
  • Privacy Policy
  • Terms & Conditions

Type above and press Enter to search. Press Esc to cancel.

Cleantalk Pixel