Close Menu
  • News
  • Medical
  • Technology
  • Nanomaterials
  • Research
  • Blog
    • Nasiol.com
  • Contact
    • Tech7685@gmail.com
What's Hot

A new molecular model of bilayer graphene with higher semiconducting properties

May 31, 2025

5 Nanomaterial Innovations That Didn’t Deliver (Yet)

May 30, 2025

Scientists identify new 2D copper boride material with unique atomic structure

May 30, 2025
Facebook X (Twitter) Instagram
Nanotech – Nanomaterials | Medical | Research | News Stories Updated Daily Nanotech – Nanomaterials | Medical | Research | News Stories Updated Daily
  • News
  • Medical
  • Technology
  • Nanomaterials
  • Research
  • Blog
    • Nasiol.com
  • Contact
    • Tech7685@gmail.com
Facebook X (Twitter) Instagram
Nanotech – Nanomaterials | Medical | Research | News Stories Updated Daily Nanotech – Nanomaterials | Medical | Research | News Stories Updated Daily
Home»News»Advancing Uranium Remediation: The Graphene-Based Solution
News

Advancing Uranium Remediation: The Graphene-Based Solution

February 9, 2024No Comments6 Mins Read
Facebook Twitter Pinterest Telegram LinkedIn Tumblr WhatsApp Email
Advancing Uranium Remediation: The Graphene-Based Solution
Share
Facebook Twitter LinkedIn Pinterest Telegram Email

Discover how graphene, a remarkable 2D material with unique properties, could revolutionize uranium remediation efforts. From its exceptional sorption capabilities to recent research breakthroughs, learn about the advantages, case studies, challenges, and future directions in utilizing graphene-based solutions for uranium contamination.

Image Credit: Mr Doomits/Shutterstock.com

Importance of Graphene in Remediation

Graphene is composed of a single layer of carbon atoms arranged in a hexagonal lattice and has exceptional mechanical, electrical, and thermal properties due to a high surface area, chemical stability, and reactivity. These properties make graphene an exciting candidate for applications like environmental remediation.

For instance, graphene-based materials with chemical modifications have been used by researchers to remove several pollutants like Cr(VI), As(III and V), Co(II),  Hg(II),  Pb(II), and organic pollutants from different solutions.3

Advantages of Graphene in Uranium Sorption

Uranium is a radioactive element that can infiltrate the ecosystem by mining, usage, and production, contaminating soil and water and poses a significant environmental threat if not treated properly. Researchers have been exploring various uranium remediation methods to tackle this hazard. With advancements in material science and nanotechnology, graphene has become a very useful material in this regard due to its unique properties. 1

In uranium remediation, graphene’s large surface area-to-volume ratio provides unique advantages for affective sorption and removing uranium ions from contaminated environments since it provides sufficient active sites.

The chemical stability of graphene ensures durability in harsh environmental conditions of prolonged exposure to uranium-contaminated media.3

Another advantage of using graphene for uranium remediation is that its surface can be modified with various functional groups, which allows researchers to tailor its chemical properties for specific remediation applications. For instance, graphene oxide (GO) exhibits diverse functional groups on its surface and edges, including hydroxyl, epoxy, carboxyl, and carbonyl groups, that contribute to its characteristics, such as excellent dispersion, hydrophilicity, and compatibility.

See also  New Power Generator Collects Natural Atmospheric Humidity

The functional groups present on GO’s surface serve as active adsorption sites for environmental pollutants, including uranium and other radioactive species found in wastewater.4

Research Case Studies

MXene/Graphene Oxide in Uranium Wastewater Treatment

In a 2022 study, researchers have advanced uranium remediation through a novel graphene-based solution. They utilized MXene/graphene oxide nanocomposites (MGN) to effectively remove U(VI) from wastewater utilizing MGN’s micro-wrinkle structure with a large specific surface area.

MGN-2 exhibited an exceptional U(VI) adsorption capacity of 1003.5 mg•g-1 with a short equilibrium time of one hour and a high adsorption efficiency even after eight cycles. The adsorption mechanism involved reduction-induced immobilization and complexation of U(VI).

This study highlights MGN-2 as a promising adsorbent for U(VI) removal, offering potential for wastewater treatment. Additionally, the preparation method presents a new avenue for developing high-efficiency U(VI) adsorbents, contributing to advancements in uranium pollution mitigation.2

Nuclear power plant after sunset. Dusk landscape with big chimneys.

Image Credit: vlastas/Shutterstock.com

Efficient Uranium Adsorption with 3D rGO/ZIF-67 Aerogel

Another study focuses on a novel adsorbent, the rGO/ZIF-67 aerogel, created by the in-situ assembly of zeolitic imidazolate framework-67 (ZIF-67) on reduced graphene oxide (rGO) hydrogel.

The researchers described the adsorption process using the pseudo-second-order kinetic model and the Langmuir isothermal model, with the composite material exhibiting an excellent adsorption capacity of 1888.55 mg/g. The study has also found that the temperature rise favors the adsorption process, demonstrating its feasibility under varying conditions.

The rGO/ZIF-67 aerogel, with its 3D porous network structure, offers a promising solution for efficient uranium removal, addressing concerns related to radioactive elements discharged into water bodies in the context of nuclear industry development.6

See also  Utilizing palladium for addressing contact issues of buried oxide thin film transistors

Magnetic Graphene Composite for Uranium Remediation

Researchers introduced a groundbreaking solution for uranium remediation by developing a novel magnetic composite, graphene oxide/Fe3O4/glucose-COOH (GO/Fe3O4/GC), in a 2021 study published in Scientific Reports. This composite was efficiently synthesized from glucose using hydrothermal carbonization and its combination with graphene oxide (GO).

The adsorption experiments demonstrated outstanding uranium adsorption performance and rapid solid–liquid separation from aqueous solutions. GO/Fe3O4/GC surpassed the capabilities of glucose-COOH (GC) and magnetic GC (MGC), with a maximum adsorption capacity of 390.70 mg g−1.

The study emphasized the strategic use of hydrothermal carbonization in biomass modification and the incorporation of graphene oxide for enhanced adsorption efficiency. This magnetic composite offers a cost-effective, high-efficiency, and rapidly separable solution for uranium removal, showcasing significant potential for water purification applications.5

Challenges and Future Directions

The abundant use of uranium has consequences that create long-term environmental hazards and health challenges to human beings and bioorganisms.3 Although using graphene-based uranium remediation is a great option, it still faces some challenges like scalability and reusability.

Researchers need to develop cost-effective and scalable graphene synthesis methods to make graphene’s+ application in uranium remediation economically viable. Moreover, due to its novelty, the long-term behavior of graphene-based materials in complex environmental matrices is not fully understood. Therefore, future research should focus on long-term benefits, investigating potential interactions with other substances present in soil or water to ensure the stability and effectiveness of these graphene-based remediation strategies over time.

How is Nanotechnology Used in Soil Remediation?

References and Further Reading

  1. Jabbar, A. A., Hussain, D. H., Latif, K. H., Albukhaty, S., Jasim, A. K., Sulaiman, G. M., & Abomughaid, M. M. (2024). Extremely efficient aerogels of graphene oxide/graphene oxide nanoribbons/sodium alginate for uranium removal from wastewater solution. Scientific Reports. https://doi.org/10.1038/s41598-024-52043-1
  2. Li, K., Xiong, T., Liao, J., Lei, Y., Zhang, Y., & Zhu, W. (2022). Design of MXene/graphene oxide nanocomposites with micro-wrinkle structure for efficient separating of uranium (VI) from wastewater. Chemical Engineering Journal. https://doi.org/10.1016/j.cej.2021.134449
  3. Li, Z., Chen, F., Yuan, L., Liu, Y., Zhao, Y., Chai, Z., & Shi, W. (2012). Uranium (VI) adsorption on graphene oxide nanosheets from aqueous solutions. Chemical engineering journal. https://doi.org/10.1016/j.cej.2012.09.030
  4. Liu, H., & Mao, Y. (2021). Graphene oxide-based nanomaterials for uranium adsorptive uptake. ES Materials & Manufacturing. http://dx.doi.org/10.30919/esmm5f453
  5. Yang, A., Wang, Z., & Zhu, Y. (2021). Facile preparation and highly efficient sorption of magnetic composite graphene oxide/Fe3O4/GC for uranium removal. Scientific Reports. https://doi.org/10.1038/s41598-021-86768-0
  6. Zhao, M., Tesfay Reda, A., & Zhang, D. (2020). Reduced graphene oxide/ZIF-67 aerogel composite material for uranium adsorption in aqueous solutions. ACS omega. https://doi.org/10.1021/acsomega.0c00089
See also  Chemists develop graphene-based biosensor, paving the way for advanced diagnostics

Disclaimer: The views expressed here are those of the author expressed in their private capacity and do not necessarily represent the views of AZoM.com Limited T/A AZoNetwork the owner and operator of this website. This disclaimer forms part of the Terms and conditions of use of this website.

Source link

Advancing Graphenebased Remediation Solution Uranium
Share. Facebook Twitter Pinterest LinkedIn Tumblr Email

Related Posts

A new molecular model of bilayer graphene with higher semiconducting properties

May 31, 2025

5 Nanomaterial Innovations That Didn’t Deliver (Yet)

May 30, 2025

Scientists identify new 2D copper boride material with unique atomic structure

May 30, 2025

Nanoscale biosensor lets scientists monitor molecules in real time

May 30, 2025

How should we govern nanotechnology?

May 29, 2025

The Future of Needle-Free Immunization

May 28, 2025

Comments are closed.

Top Articles
News

What is Raman Microspectrometry and Why is it Used?

A new method for precision delivery of nanoparticles and small molecules to individual cells

Expansion technique to image nanoscale structures inside cells makes high-resolution imaging more accessible

Editors Picks

A new molecular model of bilayer graphene with higher semiconducting properties

May 31, 2025

5 Nanomaterial Innovations That Didn’t Deliver (Yet)

May 30, 2025

Scientists identify new 2D copper boride material with unique atomic structure

May 30, 2025

New contact lenses allow wearers to see in the near-infrared

May 30, 2025
About Us
About Us

Your go-to source for the latest nanotechnology breakthroughs. Explore innovations, applications, and implications shaping the future at the molecular level. Stay informed, embrace the nano-revolution.

We're accepting new partnerships right now.

Facebook X (Twitter) Instagram Pinterest
Our Picks

What is Quantum Mechanical Modeling?

August 10, 2024

Researchers discuss lipid nanoparticle therapy to stop tumor growth and restore tumor suppression

January 19, 2025

Creating a broadband diffractive graphene orbital angular momentum metalens by laser nanoprinting

October 19, 2023

Subscribe to Updates

Get the latest creative Nano Tech news from Elnano.com

© 2025 Elnano.com - All rights reserved.
  • Contact
  • Privacy Policy
  • Terms & Conditions

Type above and press Enter to search. Press Esc to cancel.

Cleantalk Pixel