Close Menu
  • News
  • Medical
  • Technology
  • Nanomaterials
  • Research
  • Blog
    • Nasiol.com
  • Contact
    • Tech7685@gmail.com
What's Hot

Dual-stage monitoring technique for nanocomposites can streamline manufacturing and property tracking

May 11, 2025

Probing the molecular mechanisms of metastasis

May 10, 2025

AI-powered electronic nose detects diverse scents for health care and environmental applications

May 10, 2025
Facebook X (Twitter) Instagram
Nanotech – Nanomaterials | Medical | Research | News Stories Updated Daily Nanotech – Nanomaterials | Medical | Research | News Stories Updated Daily
  • News
  • Medical
  • Technology
  • Nanomaterials
  • Research
  • Blog
    • Nasiol.com
  • Contact
    • Tech7685@gmail.com
Facebook X (Twitter) Instagram
Nanotech – Nanomaterials | Medical | Research | News Stories Updated Daily Nanotech – Nanomaterials | Medical | Research | News Stories Updated Daily
Home»News»Advancing nanoscale imaging capabilities with dynamic nuclear polarization
News

Advancing nanoscale imaging capabilities with dynamic nuclear polarization

September 2, 2024No Comments3 Mins Read
Facebook Twitter Pinterest Telegram LinkedIn Tumblr WhatsApp Email
Advancing nanoscale imaging capabilities with dynamic nuclear polarization
Share
Facebook Twitter LinkedIn Pinterest Telegram Email
Schematic of the experimental setup depicting a nanoscale droplet containing glucose and the free radical OX063. In the DNP process, the magnetic fields produced by the flow microwave frequency currents through a narrow metallic constriction induce coherent spin flips between electron spins in OX063 (green-colored spheres) and nearby hydrogen spins (gold-colored spheres). This exchange in magnetization boosts the polarization of hydrogen spins by more than a factor of 100, thus providing a significant enhancement in nuclear spin detection sensitivity. Credit: University of Waterloo

Dynamic nuclear polarization (DNP) has revolutionized the field of nanoscale nuclear magnetic resonance (NMR), making it possible to study a wider range of materials, biomolecules and complex dynamic processes such as how proteins fold and change shape inside a cell.

A team of researchers at the University of Waterloo are combining pulsed DNP with nanoscale magnetic resonance force microscopy (MRFM) measurements to demonstrate that this process can be implemented on the nanoscale with high efficiency. The effort is overseen by Dr. Raffi Budakian, faculty member of the Institute for Quantum Computing and a professor in the Department of Physics and Astronomy, and his team consisting of Sahand Tabatabaei, Pritam Priyadarshi , Namanish Singh, Pardis Sahafi, and Dr. Daniel Tay.

“Large-Enhancement Nanoscale Dynamic Nuclear Polarization Near a Silicon Nanowire Surface” was published in Science Advances on Wednesday, August 21.

In conventional magnetic resonance, the detection relies on the thermal population difference between “up” and “down” spin states within an external magnetic field. However, in nanoscale magnetic resonance, where the number of spins is significantly reduced, the inherent statistical fluctuations in spin orientation can be larger than the thermal polarization. Thus, it is better to measure the statistical polarization rather than the thermal polarization when observing nanoscale spin ensembles.

Researchers advance nanoscale imaging capabilities
Experimental setup and polarizing agent. Credit: Science Advances (2024). DOI: 10.1126/sciadv.ado9059

Nevertheless, due to the substantially larger thermal electron polarization compared to nuclear spins, dynamic nuclear polarization (DNP) can be employed to amplify nuclear spin polarization by transferring polarization from electrons to nearby nuclei. This enhancement significantly boosts detection sensitivity in nuclear magnetic resonance (NMR) applications.

The team’s experiments revealed a 100-fold increase in the thermal polarization of hydrogen nuclear spins, corresponding to a 15-fold increase in detection sensitivity, when compared to statistical polarization. Crucially, this enhancement corresponds to a reduction in the measurement time by a factor of 200, which allowed them to acquire signals much more rapidly. These results substantially advance the capabilities of MRFM detection as a practical tool for nanoscale imaging.

See also  Implantable biosensors get major longevity boost with coating technology that inhibits biofouling

“By combining DNP’s substantial enhancements with nanometer-scale magnetic resonance imaging (MRI) and ultra-sensitive spin detection, three-dimensional MRI of biomolecular structures with angstrom-scale resolution could become achievable—a transformative capability in structural biology,” Budakian says.

Looking forward, the research team aims to apply DNP-enhanced MRFM measurements for 3D nanometer scale structures such as viruses and proteins. They hope to increase nuclear spin detection sensitivity by operating at lower temperatures and higher magnetic fields.

Provided by
University of Waterloo



Source link

Advancing capabilities dynamic Imaging nanoscale nuclear polarization
Share. Facebook Twitter Pinterest LinkedIn Tumblr Email

Related Posts

Dual-stage monitoring technique for nanocomposites can streamline manufacturing and property tracking

May 11, 2025

Probing the molecular mechanisms of metastasis

May 10, 2025

AI-powered electronic nose detects diverse scents for health care and environmental applications

May 10, 2025

Microbubble dynamics in boiling water enable precision fluid manipulation

May 9, 2025

Unique molecule may lead to smaller, more efficient computers

May 9, 2025

Depositing quantum dots on corrugated chips improves photodetector capabilities

May 8, 2025

Comments are closed.

Top Articles
News

Semiconductor Manufacturing: The Industry’s Biggest Players

News

Enzyme-powered ‘snot bots’ help deliver drugs in sticky situations

Research

Breakthrough in Antimicrobial Technology with Cinnamon-Based Nanokiller

Editors Picks

Dual-stage monitoring technique for nanocomposites can streamline manufacturing and property tracking

May 11, 2025

Probing the molecular mechanisms of metastasis

May 10, 2025

AI-powered electronic nose detects diverse scents for health care and environmental applications

May 10, 2025

Microbubble dynamics in boiling water enable precision fluid manipulation

May 9, 2025
About Us
About Us

Your go-to source for the latest nanotechnology breakthroughs. Explore innovations, applications, and implications shaping the future at the molecular level. Stay informed, embrace the nano-revolution.

We're accepting new partnerships right now.

Facebook X (Twitter) Instagram Pinterest
Our Picks

Researchers present new method to fine-tune properties of layered transition metal dichalcogenide crystals

June 24, 2024

Tiny chips promise swift disease diagnosis from a single breath

December 23, 2024

Water-free manufacturing approach could help advance 2D electronics integration

September 30, 2024

Subscribe to Updates

Get the latest creative Nano Tech news from Elnano.com

© 2025 Elnano.com - All rights reserved.
  • Contact
  • Privacy Policy
  • Terms & Conditions

Type above and press Enter to search. Press Esc to cancel.

Cleantalk Pixel