Close Menu
  • News
  • Medical
  • Technology
  • Nanomaterials
  • Research
  • Blog
    • Nasiol.com
  • Contact
    • Tech7685@gmail.com
What's Hot

Rapid nanoparticle simulations could boost efforts to combat air pollution

June 1, 2025

New tool reveals how DNA nanostructures interact with cell membranes

June 1, 2025

New insights show universal applicability of carbyne as a sensor

May 31, 2025
Facebook X (Twitter) Instagram
Nanotech – Nanomaterials | Medical | Research | News Stories Updated Daily Nanotech – Nanomaterials | Medical | Research | News Stories Updated Daily
  • News
  • Medical
  • Technology
  • Nanomaterials
  • Research
  • Blog
    • Nasiol.com
  • Contact
    • Tech7685@gmail.com
Facebook X (Twitter) Instagram
Nanotech – Nanomaterials | Medical | Research | News Stories Updated Daily Nanotech – Nanomaterials | Medical | Research | News Stories Updated Daily
Home»News»Advances in optical micronanofiber-enabled tactile sensors and soft actuators
News

Advances in optical micronanofiber-enabled tactile sensors and soft actuators

September 8, 2024No Comments3 Mins Read
Facebook Twitter Pinterest Telegram LinkedIn Tumblr WhatsApp Email
Advances in optical micronanofiber-enabled tactile sensors and soft actuators
Share
Facebook Twitter LinkedIn Pinterest Telegram Email
Characteristic properties and diverse functions and applications of recently developed tactile sensors and soft actuators. Credit: OES

A perfect combination of fiber optics and micro/nanotechnology, optical micro/nanofiber (MNF) is a new type of micro/nano-waveguide structure developed in recent years.

Compared with standard fiber, MNF has a smaller diameter and larger core cladding refractive index contrast, so it offers unique optical properties, including low transmission loss, strong light-field constraint, large evanescent field, small bending radius, small mass, and compatibility with standard fiber.

MNF-enabled flexible optoelectronic devices with high sensitivity, small size, and low power consumption have been widely used in the fields of tactile sensors and soft actuators. To date, flexible MNF sensors, also known as “optical skin,” have been used to monitor pressure, temperature, hardness, pulse and breathing with high sensitivity, fast response, and anti-electromagnetic interference.

In addition, the MNF-enabled soft actuators provide a new strategy for micromanipulation and micro-robotics. MNFs have unique properties in the field of flexible optoelectronics and have broad application prospects in the fields of machine haptics, human-computer interaction, medical monitoring, and micro-nano robots.

A review published in Opto-Electronic Science covers two parts of MNF-enabled tactile sensors and actuators. First, the manufacturing method for MNF tactile sensor is presented from the aspects of fiber drawing, polymer packaging, device preparation and system integration. Then, the review introduces structural design, sensing mechanism, performance characteristics and application fields, such as fingertip/radial pulse monitoring, data gloves, smart wristband, tactile textile and industrial/medical robots.

Mechanistically, MNF-enabled tactile sensors can be categorized into taper type (single-cone), double-cone type, resonator type, grating type, interferometer type and micro-coupler type according to their structures.

The sensing signal is extracted mainly through wavelength demodulation and intensity demodulation. Wavelength demodulation by tracking the movement of resonant wavelength is mainly used in WGM resonators, FP resonators, Theta resonators, Sagnac resonators, Fiber Bragg Grating, etc.

See also  Tunable metasurface can control optical light in space and time, offering path to wireless communication channels

Intensity detection is a simpler detection method, which uses miniaturized semiconductor light source and photodiode to monitor the change of MNF’s transmittance, so as to realize the miniaturization of a sensing system and efficient acquisition of sensing signals.

Advances in optical micronanofiber enabled tactile sensors and soft actuators
MNF tactile sensors for human machine interaction. Credit: OES

The MNF-enabled data glove, smart wristband, smart textiles, proximity and tactile composite multi-parameter interactive interfaces have realized the systematic integration of light source, photo detectors, and MNF sensors. They are lightweight, sensitive, and have low power consumption and anti-electromagnetic interference in the field of human-computer interaction.

MNFs also have high compliance and a strong evanescent field, making MNF-enabled photoactuators with large angular deformation, stable for the safe clamping of small objects.

Advances in optical micronanofiber enabled tactile sensors and soft actuators
MNF enabled photoactuators. Credit: OES

In summary, this paper reviews the cutting-edge progress and highlights of the research in MNF-enabled tactile sensors/actuators and looks forward to the great potential of applications in the fields of distributed sensing, soft actuators with the abilities of complex deformation and sensing, and AI-enhanced sensors/actuators.

Provided by
Compuscript Ltd


Source link

Actuators Advances micronanofiberenabled optical Sensors soft tactile
Share. Facebook Twitter Pinterest LinkedIn Tumblr Email

Related Posts

Rapid nanoparticle simulations could boost efforts to combat air pollution

June 1, 2025

New tool reveals how DNA nanostructures interact with cell membranes

June 1, 2025

New insights show universal applicability of carbyne as a sensor

May 31, 2025

A new molecular model of bilayer graphene with higher semiconducting properties

May 31, 2025

5 Nanomaterial Innovations That Didn’t Deliver (Yet)

May 30, 2025

Scientists identify new 2D copper boride material with unique atomic structure

May 30, 2025

Comments are closed.

Top Articles

New electrochemical water splitting method offers fast, sustainable method for hydrogen production

News

Finely regulated luminescent Ag-In-Ga-S quantum dots with green-red dual emission toward white LEDs

News

Physicists Demonstrate How Sound Can Cross the Vacuum

Editors Picks

Rapid nanoparticle simulations could boost efforts to combat air pollution

June 1, 2025

New tool reveals how DNA nanostructures interact with cell membranes

June 1, 2025

New insights show universal applicability of carbyne as a sensor

May 31, 2025

A new molecular model of bilayer graphene with higher semiconducting properties

May 31, 2025
About Us
About Us

Your go-to source for the latest nanotechnology breakthroughs. Explore innovations, applications, and implications shaping the future at the molecular level. Stay informed, embrace the nano-revolution.

We're accepting new partnerships right now.

Facebook X (Twitter) Instagram Pinterest
Our Picks

Goji berries yield antibacterial silver nanoparticles

January 15, 2025

New method links graphene nanolayers for tougher, elastic films

June 23, 2024

Butterfly-Inspired Films Create Vibrant Colors While Passively Cooling Objects

August 12, 2023

Subscribe to Updates

Get the latest creative Nano Tech news from Elnano.com

© 2025 Elnano.com - All rights reserved.
  • Contact
  • Privacy Policy
  • Terms & Conditions

Type above and press Enter to search. Press Esc to cancel.

Cleantalk Pixel