Close Menu
  • News
  • Medical
  • Technology
  • Nanomaterials
  • Research
  • Blog
    • Nasiol.com
  • Contact
    • Tech7685@gmail.com
What's Hot

Large-aperture MEMS modulator paves way for high-speed, energy-efficient optical communication systems

May 11, 2025

Dual-stage monitoring technique for nanocomposites can streamline manufacturing and property tracking

May 11, 2025

Probing the molecular mechanisms of metastasis

May 10, 2025
Facebook X (Twitter) Instagram
Nanotech – Nanomaterials | Medical | Research | News Stories Updated Daily Nanotech – Nanomaterials | Medical | Research | News Stories Updated Daily
  • News
  • Medical
  • Technology
  • Nanomaterials
  • Research
  • Blog
    • Nasiol.com
  • Contact
    • Tech7685@gmail.com
Facebook X (Twitter) Instagram
Nanotech – Nanomaterials | Medical | Research | News Stories Updated Daily Nanotech – Nanomaterials | Medical | Research | News Stories Updated Daily
Home»News»Advances in nanoscale force measurement opens doors to unprecedented biological insights
News

Advances in nanoscale force measurement opens doors to unprecedented biological insights

July 1, 2024No Comments3 Mins Read
Facebook Twitter Pinterest Telegram LinkedIn Tumblr WhatsApp Email
Advances in nanoscale force measurement opens doors to unprecedented biological insights
Share
Facebook Twitter LinkedIn Pinterest Telegram Email
Nanoscale interaction force sensing between Ln-NC and Au surface. Credit: Nature Photonics (2024). DOI: 10.1038/s41566-024-01462-7

New research has revealed a new way to measure incredibly minute forces at the nanoscale in water, pushing the boundaries of what scientists know about the microscopic world.

The significant nanotechnology advance was achieved by researchers from Beihang University in China with RMIT University and other institutions, including the Australian National University and University of Technology Sydney.

The paper, “Sub-femtonewton force sensing in solution by super-resolved photonic force microscopy,” was published in Nature Photonics.

The new technique, involving a super-resolved photonic force microscope (SRPFM), is capable of detecting forces in water as small as 108.2 attonewtons—a scale so minute that it compares to measuring the weight of a virus.

Lead researcher from Beihang University, Professor Fan Wang, said the key to this ultra-sensitive measurement lay in the use of lanthanide-doped nanoparticles, trapped by optical tweezers, which are then used to probe the minute forces at play within biological systems.

“Understanding these tiny forces is crucial for the study of biomechanical processes, which are fundamental to the workings of living cells,” he said.

“Until now, measuring such small forces with high precision in a liquid environment was a significant challenge due to factors like probe heating and weak signal issues.”

Breakthrough in nanoscale force measurement opens doors to unprecedented biological insights
Nanoscale thermally limited force sensing by an SRPFM. Credit: Nature Photonics (2024). DOI: 10.1038/s41566-024-01462-7

The SRPFM technique developed by Wang and his team addresses these challenges by employing advanced nanotechnology and computational techniques.

By leveraging neural network-empowered super-resolution localization, the team is able to precisely measure how the nanoparticles are displaced by tiny forces within a fluid medium.

Study co-first author from RMIT University, Dr. Lei Ding, said this innovation not only enhances the resolution and sensitivity of force measurements but also minimizes the energy required to trap the nanoparticles, thereby reducing potential damage to biological samples.

See also  In quest to prevent debilitating traumatic brain injuries, new foam material rises to the top

“Our method can detect forces down to 1.8 femtonewtons per square root of the bandwidth, which is near the theoretical limit imposed by thermal noise,” Ding said.

The implications of this research are vast, added Dr. Xuchen Shan, co-first author from Beihang University. “By providing a new tool to measure biological events at the molecular level, this technique could revolutionize our understanding of a host of biological and physical phenomena,” Shan said.

This includes everything from how proteins function within human cells to new methods of detecting diseases at an early stage.

The study also explored the application of this technology in measuring electrophoresis forces acting on single nanoparticles and the interaction forces between DNA molecules and interfaces, crucial for the development of advanced biomedical engineering techniques.

The team’s findings not only pave the way for new scientific discoveries but also have potential applications in the development of new nanotechnological tools and improving the sensitivity of biomedical diagnostics.

Provided by
RMIT University



Source link

Advances biological doors Force Insights Measurement nanoscale opens Unprecedented
Share. Facebook Twitter Pinterest LinkedIn Tumblr Email

Related Posts

Large-aperture MEMS modulator paves way for high-speed, energy-efficient optical communication systems

May 11, 2025

Dual-stage monitoring technique for nanocomposites can streamline manufacturing and property tracking

May 11, 2025

Probing the molecular mechanisms of metastasis

May 10, 2025

AI-powered electronic nose detects diverse scents for health care and environmental applications

May 10, 2025

Microbubble dynamics in boiling water enable precision fluid manipulation

May 9, 2025

Unique molecule may lead to smaller, more efficient computers

May 9, 2025

Comments are closed.

Top Articles
News

Unique molecule may lead to smaller, more efficient computers

News

Ultrafast Lasers Shrunk to Fingertip Size

News

A History of the Semiconductor Chip

Editors Picks

Large-aperture MEMS modulator paves way for high-speed, energy-efficient optical communication systems

May 11, 2025

Dual-stage monitoring technique for nanocomposites can streamline manufacturing and property tracking

May 11, 2025

Probing the molecular mechanisms of metastasis

May 10, 2025

AI-powered electronic nose detects diverse scents for health care and environmental applications

May 10, 2025
About Us
About Us

Your go-to source for the latest nanotechnology breakthroughs. Explore innovations, applications, and implications shaping the future at the molecular level. Stay informed, embrace the nano-revolution.

We're accepting new partnerships right now.

Facebook X (Twitter) Instagram Pinterest
Our Picks

Overcoming fine process limits with linker ion affinity

February 17, 2024

Drug delivery system overcomes circulatory roadblock that prevents gene therapies from reaching their targets

November 3, 2024

Nanoindenters | A Guide

August 19, 2023

Subscribe to Updates

Get the latest creative Nano Tech news from Elnano.com

© 2025 Elnano.com - All rights reserved.
  • Contact
  • Privacy Policy
  • Terms & Conditions

Type above and press Enter to search. Press Esc to cancel.

Cleantalk Pixel