Close Menu
  • News
  • Medical
  • Technology
  • Nanomaterials
  • Research
  • Blog
    • Nasiol.com
  • Contact
    • Tech7685@gmail.com
What's Hot

Single-layer waveguide display uses achromatic metagratings for more compact augmented reality eyewear

June 5, 2025

2D hybrid material integrates graphene and silica glass for next-generation electronics

June 4, 2025

Zeolite nanopore model links crystal size to metal cluster migration and catalyst performance

June 4, 2025
Facebook X (Twitter) Instagram
Nanotech – Nanomaterials | Medical | Research | News Stories Updated Daily Nanotech – Nanomaterials | Medical | Research | News Stories Updated Daily
  • News
  • Medical
  • Technology
  • Nanomaterials
  • Research
  • Blog
    • Nasiol.com
  • Contact
    • Tech7685@gmail.com
Facebook X (Twitter) Instagram
Nanotech – Nanomaterials | Medical | Research | News Stories Updated Daily Nanotech – Nanomaterials | Medical | Research | News Stories Updated Daily
Home»News»Adequately stabilized and exposed Cu/CuₓO heterojunction on porous carbon nanofibers
News

Adequately stabilized and exposed Cu/CuₓO heterojunction on porous carbon nanofibers

May 5, 2024No Comments2 Mins Read
Facebook Twitter Pinterest Telegram LinkedIn Tumblr WhatsApp Email
Adequately stabilized and exposed Cu/CuₓO heterojunction on porous carbon nanofibers
Share
Facebook Twitter LinkedIn Pinterest Telegram Email
The Cu/CuxO heterostructure, encaged within porous carbon nanofibers, exhibits a 70.7% faradaic efficiency, a 282.8 ma cm–2 partial current and an 8.4 a mg–1 Cu mass activity for CO2 electroreduction to C2F5OH production. Credit: Chinese Journal of Catalysis

Inexpensive and readily available copper-based catalysts are considered ideal for the electrochemical CO2 reduction reaction (CO2RR) to produce multi-carbon products. The presence of copper oxides is crucial for generating high-value-added products in CO2RR.

However, the inevitable side hydrogen evolution reaction and the easy self-reduction reaction of copper oxide under the negative potentials diminish the catalytic activity and selectivity of CO2RR. Currently, designing a stable phase with both resistance to electrochemical self-reduction and high CO2RR activity is challenging.

Recently, a research team led by Prof. Chuanxin He from Shenzhen University, China, sought to fully utilize the confinement effect and carrier effect of porous carbon nanofiber substrates on metal nanoparticles, significantly enhancing the exposure of active sites Cu/CuxO heterojunctions at the catalytic reaction interface.

The catalyst could maintain the structural stability of copper oxides under a current density of 400 mA cm‒2 and achieve an excellent CO2RR performance to ethanol with a Faradaic efficiency as high as 70.7% and a mass activity of 8.4 A mg‒1.

In this research, highly-dispersed copper nanoparticles within carbon nanofiber were firstly prepared via electrospinning, then the O2-plasma treatment was introduced to simultaneously create Cu/CuxO heterostructure and opening mesopores throughout those carbon nanofibers.

Specifically, the opening mesopores throughout carbon nanofibers can fully expose the Cu/CuxO sites to the three-phase interface compared with untreated carbon nanofibers, leading to high and stable catalytic activity with low metal loading amount.

Combined with the physical characterizations and in-situ spectral characterizations such as infrared and Raman spectroscopy analysis, a dynamic stabilized state of CuxO and the key signals of *CO and C–C bond are observed during the CO2RR process. Additionally, DFT calculations show that the presence of CuxO promotes the spillover of *CO intermediate to the Cu/CuxO interface, which can decrease the C–C coupling energy barrier to form C2H5OH during the CO2RR process.

See also  Researchers demonstrate new way to 'squeeze' infrared light

The carbon substrate can enhance electron transport and act as an electron donor to neutralize the reduction of CuxO under a negative potential, which assists the stability of Cu/CuxO heterostructure and maintains 213-h stability at high current densities. The results were published in Chinese Journal of Catalysis.

Provided by
Chinese Academy of Sciences



Source link

Adequately carbon CuCuₓO exposed heterojunction Nanofibers porous stabilized
Share. Facebook Twitter Pinterest LinkedIn Tumblr Email

Related Posts

Single-layer waveguide display uses achromatic metagratings for more compact augmented reality eyewear

June 5, 2025

2D hybrid material integrates graphene and silica glass for next-generation electronics

June 4, 2025

Zeolite nanopore model links crystal size to metal cluster migration and catalyst performance

June 4, 2025

Spontaneous symmetry breaking in electron systems proves elusive

June 3, 2025

Improving Crop Tolerance to Drought and Heat Using Nanomaterials

June 3, 2025

Crystal-modifying agent piracetam provides scalable strategy for high-efficiency all-perovskite tandem solar cells

June 3, 2025

Comments are closed.

Top Articles
News

Automated AFM Solutions for the Semiconductor Industry

News

Cells’ electric fields keep nanoparticles at bay, scientists confirm

News

Nanotechnology in China: Market Report

Editors Picks

Single-layer waveguide display uses achromatic metagratings for more compact augmented reality eyewear

June 5, 2025

2D hybrid material integrates graphene and silica glass for next-generation electronics

June 4, 2025

Zeolite nanopore model links crystal size to metal cluster migration and catalyst performance

June 4, 2025

Spontaneous symmetry breaking in electron systems proves elusive

June 3, 2025
About Us
About Us

Your go-to source for the latest nanotechnology breakthroughs. Explore innovations, applications, and implications shaping the future at the molecular level. Stay informed, embrace the nano-revolution.

We're accepting new partnerships right now.

Facebook X (Twitter) Instagram Pinterest
Our Picks

Synthesis of Boron Nitride

September 27, 2023

Nanowire-based capture of micro-ribonucleic acids

November 27, 2024

Ultrafast Laser Technology Miniaturized on Tiny Photonic Chips

November 22, 2023

Subscribe to Updates

Get the latest creative Nano Tech news from Elnano.com

© 2025 Elnano.com - All rights reserved.
  • Contact
  • Privacy Policy
  • Terms & Conditions

Type above and press Enter to search. Press Esc to cancel.

Cleantalk Pixel