Close Menu
  • News
  • Medical
  • Technology
  • Nanomaterials
  • Research
  • Blog
    • Nasiol.com
  • Contact
    • Tech7685@gmail.com
What's Hot

Physicists create ultra-stretchable graphene via an accordion-like rippling effect

May 14, 2025

Silver nanoparticles produced by fungus could be used to prevent and treat COVID-19

May 14, 2025

An electronic band-aid that delivers therapy directly to organs

May 13, 2025
Facebook X (Twitter) Instagram
Nanotech – Nanomaterials | Medical | Research | News Stories Updated Daily Nanotech – Nanomaterials | Medical | Research | News Stories Updated Daily
  • News
  • Medical
  • Technology
  • Nanomaterials
  • Research
  • Blog
    • Nasiol.com
  • Contact
    • Tech7685@gmail.com
Facebook X (Twitter) Instagram
Nanotech – Nanomaterials | Medical | Research | News Stories Updated Daily Nanotech – Nanomaterials | Medical | Research | News Stories Updated Daily
Home»News»Achieving the goal with UV-assisted atomic layer deposition
News

Achieving the goal with UV-assisted atomic layer deposition

August 15, 2023No Comments2 Mins Read
Facebook Twitter Pinterest Telegram LinkedIn Tumblr WhatsApp Email
Achieving the goal with UV-assisted atomic layer deposition
Share
Facebook Twitter LinkedIn Pinterest Telegram Email
Research-related image. Credit: POSTECH

In 2004, the public first became acquainted with graphene- a remarkably thin, flexible, and electrically conductive material possessing considerable strength. However, harnessing graphene’s potential as a component has presented numerous challenges.

For instance, creating electrode-based transistors requires depositing extremely thin dielectric films. Regrettably, this process has led to a reduction in graphene’s electrical properties and caused defects during implementation.

A research team comprising of co-researchers including Professor Jihwan An from the Department of Mechanical Engineering at Pohang University of Science and Technology (POSTECH), Dr. Jeong Woo Shin from the Department of Mechanical Engineering at NTU Singapore, and Geonwoo Park from the Department of MSDE at SEOULTECH employed a novel approach called UV-assisted atomic layer deposition (UV-ALD) to treat graphene electrode.

This pioneering technique resulted in successful production of high-performance graphene-dielectric interface. Their findings were featured in Advanced Electronic Materials.

The research team became the first to apply UV-ALD to the deposition of dielectric films onto the surface of graphene which is a 2D material. Atomic layer deposition (ALD) involves adding ultra-thin layers at the atomic scale to a substrate, and its significance has grown considerably as semiconductor components have shrunk in size. UV-ALD, which combines ultraviolet light with the deposition process, enables more dielectric film placement than traditional ALD. However, no one had explored the application of UV-ALD for 2D materials such as graphene.

The research team employed UV light with a low energy range (below 10 eV) to deposit atomic layer dielectric films onto the graphene surface, effectively activating the graphene surface without compromising its inherent properties. This activation was achieved under specific conditions (within 5 seconds per cycle during the ALD process), demonstrating the possibility of depositing high-density, high-purity atomic layer dielectric films at low temperatures (below 100℃).

See also  Catalytic Combo Transforms CO2 to Solid Carbon Nanofibers

Furthermore, when graphene field effect transistors were fabricated using UV-ALD process, the graphene’s exceptional electrical properties remained intact. The outcome was a three-fold increase in charge mobility and a significant reduction in Dirac voltage due to the reduced defects on the graphene surface.

Professor Jihwan An who led the research explained, “Through UV-ALD, we achieved high-performance graphene-dielectric interface.” He further added, “Our study resulted in uniform atomic layer deposition without compromising the properties of this 2D material. I hope this development will pave the way for the next-generation semi-conductor and energy devices.”

Provided by
Pohang University of Science and Technology



Source link

Achieving atomic deposition goal layer UVassisted
Share. Facebook Twitter Pinterest LinkedIn Tumblr Email

Related Posts

Physicists create ultra-stretchable graphene via an accordion-like rippling effect

May 14, 2025

Silver nanoparticles produced by fungus could be used to prevent and treat COVID-19

May 14, 2025

An electronic band-aid that delivers therapy directly to organs

May 13, 2025

Breathable algae offers a new path

May 13, 2025

A Solution for Soil and Crop Improvement

May 12, 2025

Low-coordination Mn single-atom nanozymes enable imaging-guided cancer therapy

May 12, 2025

Comments are closed.

Top Articles

Scientists Develop Efficient 2D Device for Quantum Cooling

News

Study finds iron-rich enamel protects, but doesn’t color, rodents’ orange-brown incisors

News

How Moiré Excitons Are Advancing Quantum Computing

Editors Picks

Physicists create ultra-stretchable graphene via an accordion-like rippling effect

May 14, 2025

Silver nanoparticles produced by fungus could be used to prevent and treat COVID-19

May 14, 2025

An electronic band-aid that delivers therapy directly to organs

May 13, 2025

Breathable algae offers a new path

May 13, 2025
About Us
About Us

Your go-to source for the latest nanotechnology breakthroughs. Explore innovations, applications, and implications shaping the future at the molecular level. Stay informed, embrace the nano-revolution.

We're accepting new partnerships right now.

Facebook X (Twitter) Instagram Pinterest
Our Picks

Ultrasensitive nanoscale sensors can identify lung cancer through exhaled isoprene

November 16, 2024

Researchers use nanotechnology to boost benefits of anthocyanin

November 24, 2024

Plasmon-assisted catalytic CO₂ conversion method offers sustainable e-fuel production

March 17, 2025

Subscribe to Updates

Get the latest creative Nano Tech news from Elnano.com

© 2025 Elnano.com - All rights reserved.
  • Contact
  • Privacy Policy
  • Terms & Conditions

Type above and press Enter to search. Press Esc to cancel.

Cleantalk Pixel