Close Menu
  • News
  • Medical
  • Technology
  • Nanomaterials
  • Research
  • Blog
    • Nasiol.com
  • Contact
    • Tech7685@gmail.com
What's Hot

Deep-trench 3D printing enables next-gen RF devices with unprecedented precision

May 12, 2025

Large-aperture MEMS modulator paves way for high-speed, energy-efficient optical communication systems

May 11, 2025

Dual-stage monitoring technique for nanocomposites can streamline manufacturing and property tracking

May 11, 2025
Facebook X (Twitter) Instagram
Nanotech – Nanomaterials | Medical | Research | News Stories Updated Daily Nanotech – Nanomaterials | Medical | Research | News Stories Updated Daily
  • News
  • Medical
  • Technology
  • Nanomaterials
  • Research
  • Blog
    • Nasiol.com
  • Contact
    • Tech7685@gmail.com
Facebook X (Twitter) Instagram
Nanotech – Nanomaterials | Medical | Research | News Stories Updated Daily Nanotech – Nanomaterials | Medical | Research | News Stories Updated Daily
Home»News»A targeted polymer to treat colorectal cancer liver metastases
News

A targeted polymer to treat colorectal cancer liver metastases

April 18, 2024No Comments5 Mins Read
Facebook Twitter Pinterest Telegram LinkedIn Tumblr WhatsApp Email
Share
Facebook Twitter LinkedIn Pinterest Telegram Email
A targeted polymer to treat colorectal cancer liver metastases
The polymer in the bloodstream and its binding to E-selectin, which is expressed exclusively on cells lining the walls of blood vessels in areas of liver metastases. Once bound, the polymer enters the cells, releases a toxic drug, and impairs the blood supply to metastases. Credit: Nenad Milošević

A nanosized polymer, developed by a research team from Ben-Gurion University of the Negev, can selectively deliver chemotherapeutic drugs to blood vessels that feed tumors and metastases and has emerged as an effective treatment for advanced cancer. The polymer eliminates colorectal cancer liver metastases and prolongs mice survival after a single dose therapy.

Colorectal cancer (CRC) is the third most diagnosed cancer and the third most common cause of cancer-related death in both men and women in the United States. The liver is the most common site for CRC metastasis, with around 70% of patients ultimately developing liver metastases.

Treatment options for metastatic disease are scarce, and while surgery remains the gold standard, many patients need additional therapies (chemotherapy, targeted, or immune therapy) for a curative-intended treatment.

Targeted therapies and immunotherapies directed against specific features of the tumor have emerged as promising therapeutic strategies for cancer patients, but their efficacy is often limited by the large variety of mutation profiles of CRC tumors, many of them conferring resistance to specific treatments.

Conventional small molecule cytotoxic treatments show major drawbacks, such as lack of tumor specificity and toxicity to normal (healthy) tissues, short duration of effect, and treatment failure due to acquired drug resistance.

Prof. Ayelet David and her research team developed a tiny polymer (2–5 nanometers in size) for delivering chemotherapeutic drugs into endothelial cells at the inner lining of blood vessels that support tumor growth. The polymer carries a targeting peptide that binds to the adhesive molecule E-selectin, which is expressed exclusively on endothelial cells of new blood vessels that are created to feed growing tumors and thus can deliver drugs selectively to tumors and metastatic sites.

See also  Opposites Attract, Likes Repel? Scientists Overturn Fundamental Principle of Physics

Once the polymer binds and enters the endothelial cells, it releases the toxic drug, thereby damaging the blood supply to growing tumors and metastases. Since the polymer is much larger in size than conventional chemotherapeutic molecules, it cannot leak from blood vessels to reach other healthy tissues, and thus significantly reduces the risk of side effects of chemotherapy drugs.

Previous studies conducted in Prof. David’s laboratory have shown that the unique polymer slows the progression of solid Lewis Lung Carcinoma tumors and significantly prolongs the survival time of mice with melanoma (skin cancer) metastases in the lungs.

In a recent study, Marie Rütter, a doctoral student from Prof. David’s research group, demonstrated that the polymer is not only effective in treating solid tumors but can cure mice with colorectal cancer metastases that have already spread to the liver. These findings were published in Nano Today.

About half of the mice that presented a significant number of CRC liver metastases fully recovered from the disease after a single dose of polymer therapy, and the long-term survival time of the mice was doubled compared to mice treated with a conventional chemotherapy drug.

“Colon cancer is a very aggressive tumor and spreads very quickly to the liver. About 25% of the patients with CRC present liver metastases at the time of diagnosis,” Prof. David explained.

“The available personalized treatments may prolong survival and improve quality of life for many patients with metastatic disease, although a cure is rare, and recurrence is expected. Our unique polymer demonstrates promising preclinical results for treating advanced cancer that has spread to other places in the body and usually cannot be cured or controlled with other therapies.”

See also  Scientists develop tunable colored films for displays and sensors

“About 50% of mice with established colorectal cancer liver metastases survived after a single dose treatment, without presenting adverse effects. This is a remarkable advantage, indicating that the polymer accurately hits the target and eliminates the metastases from the liver of mice that responded well to the treatment.”

“These findings support the results of our previous studies, showing that a single dose treatment cures half of the mice with established melanoma lung metastases. The therapy does not require a pre-treatment assessment for gene mutations in tumors to achieve favorable clinical outcomes.”

So far, the research team has succeeded in validating treatment efficacy in various mouse models of cancer. The developed technology was recently licensed to a biomedical company (Vaxil Biotherapeutics) for further clinical development. The company is pursuing all the necessary steps to initiate human clinical trials as soon as possible.

“This is an excellent example of a fruitful collaboration between universities and the biotech industry to accelerate drug development,” said Dr. Galit Mazooz-Perlmuter, VP business development at BGN Technologies, the technology transfer company of Ben-Gurion University of the Negev (BGU). “This is exactly the way to turn scientific breakthroughs into technological advancements in Israel.”

Provided by
Ben-Gurion University of the Negev



Source link

Share. Facebook Twitter Pinterest LinkedIn Tumblr Email

Related Posts

Deep-trench 3D printing enables next-gen RF devices with unprecedented precision

May 12, 2025

Large-aperture MEMS modulator paves way for high-speed, energy-efficient optical communication systems

May 11, 2025

Dual-stage monitoring technique for nanocomposites can streamline manufacturing and property tracking

May 11, 2025

Probing the molecular mechanisms of metastasis

May 10, 2025

AI-powered electronic nose detects diverse scents for health care and environmental applications

May 10, 2025

Microbubble dynamics in boiling water enable precision fluid manipulation

May 9, 2025

Comments are closed.

Top Articles
Research

Quantum Dots Revolutionizing Industries with Nanoscale Innovation

News

Combining Carbon Nanotubes and DNA Technologies

News

Study reveals promising development in cancer-fighting nanotechnologies

Editors Picks

Deep-trench 3D printing enables next-gen RF devices with unprecedented precision

May 12, 2025

Large-aperture MEMS modulator paves way for high-speed, energy-efficient optical communication systems

May 11, 2025

Dual-stage monitoring technique for nanocomposites can streamline manufacturing and property tracking

May 11, 2025

Probing the molecular mechanisms of metastasis

May 10, 2025
About Us
About Us

Your go-to source for the latest nanotechnology breakthroughs. Explore innovations, applications, and implications shaping the future at the molecular level. Stay informed, embrace the nano-revolution.

We're accepting new partnerships right now.

Facebook X (Twitter) Instagram Pinterest
Our Picks

High-resolution, nanoscale imaging method could accelerate the discovery of more durable materials

November 3, 2024

Drug-filled nanocapsule helps make immunotherapy more effective in mice

October 12, 2023

Scientists develop nanobody inhibitors to target deadly Ebola virus

January 13, 2025

Subscribe to Updates

Get the latest creative Nano Tech news from Elnano.com

© 2025 Elnano.com - All rights reserved.
  • Contact
  • Privacy Policy
  • Terms & Conditions

Type above and press Enter to search. Press Esc to cancel.

Cleantalk Pixel