Close Menu
  • News
  • Medical
  • Technology
  • Nanomaterials
  • Research
  • Blog
    • Nasiol.com
  • Contact
    • Tech7685@gmail.com
What's Hot

Dual-stage monitoring technique for nanocomposites can streamline manufacturing and property tracking

May 11, 2025

Probing the molecular mechanisms of metastasis

May 10, 2025

AI-powered electronic nose detects diverse scents for health care and environmental applications

May 10, 2025
Facebook X (Twitter) Instagram
Nanotech – Nanomaterials | Medical | Research | News Stories Updated Daily Nanotech – Nanomaterials | Medical | Research | News Stories Updated Daily
  • News
  • Medical
  • Technology
  • Nanomaterials
  • Research
  • Blog
    • Nasiol.com
  • Contact
    • Tech7685@gmail.com
Facebook X (Twitter) Instagram
Nanotech – Nanomaterials | Medical | Research | News Stories Updated Daily Nanotech – Nanomaterials | Medical | Research | News Stories Updated Daily
Home»News»A smart solution for advanced wound care
News

A smart solution for advanced wound care

September 11, 2024No Comments3 Mins Read
Facebook Twitter Pinterest Telegram LinkedIn Tumblr WhatsApp Email
A smart solution for advanced wound care
Share
Facebook Twitter LinkedIn Pinterest Telegram Email
Credit: Nano-Micro Letters (2024). DOI: 10.1007/s40820-024-01422-4

Chronic diabetic wounds are prevalent in patients and are difficult to heal, presenting a significant medical challenge. The development of multifunctional hydrogel dressings with a well-designed morphology and structure can enhance their flexibility and effectiveness in wound management.

Professor Hongbo Zhang from Åbo Akademi University in Finland and colleagues have proposed a self-healing hydrogel dressing based on structural color microspheres for wound management. Their research is published in the journal Nano-Micro Letters.

These microspheres are composed of an inverse opal framework with photothermal responsiveness, constructed from methacrylated hyaluronic acid, methacrylated silk fibroin, and black phosphorus quantum dots (BPQDs), and further embedded in dynamic hydrogels.

The dynamic hydrogel filler is formed through the Knoevenagel condensation reaction between cyanoacetate and benzaldehyde-functionalized dextran (DEX-CA and DEX-BA). Notably, the composite microspheres can be freely applied and, by utilizing the BPQD-mediated photothermal effect and the thermoreversible stiffness change of the dynamic hydrogel, can adhere to each other under near-infrared irradiation.

In addition, the microspheres are co-loaded with melittin and vascular endothelial growth factor, with a release behavior that can be regulated through the same mechanism. Additionally, the drug release process can be effectively monitored through visual color changes. This microsphere system demonstrates ideal capabilities in controlled drug release and efficient wound management.

Zhang and colleagues evaluated the in vivo wound healing efficacy of composite microspheres (CMPs) in a full-thickness chronic diabetic wound infection model. The diabetic model in Sprague-Dawley (SD) rats was established through intraperitoneal injection of streptozotocin (STZ).

Following the stabilization of blood glucose levels, circular full-thickness skin wounds were created on the dorsal area of the rats. Subsequently, various interventions were administered to different groups of rats to assess the effectiveness of CMPs in promoting wound healing.

See also  Unlocking the Power of Light With Advanced Metasurfaces for High-Speed Wireless Communication

Statistical analysis of wound closure areas and regenerated epithelial thickness revealed that the group treated with the dual-drug-loaded CMPs combined with near-infrared (NIR) irradiation exhibited superior wound healing outcomes, significantly outperforming other groups. These results suggest that the synergistic effects of NIR-controlled irradiation and the intelligent responsiveness of CMPs play a crucial role in enhancing wound healing.

Bacterial infection is a major cause of delayed healing in chronic wounds. The research team performed Masson’s trichrome staining to evaluate collagen deposition at the wound site. In the drug-loaded CMPs group, collagen arrangement and density were more pronounced, with increased collagen formation, confirming the CMPs’ ability to promote extracellular matrix deposition.

Neovascularization also plays a critical role in wound repair. To investigate the impact of VEGF (vascular endothelial growth factor) on wound healing, immunofluorescence staining for CD31 was employed to characterize newly formed blood vessels. Fluorescence images revealed fewer CD31-positive areas in the control group, whereas the CMPs@AMP&VEGF + NIR group exhibited the highest CD31 expression.

Provided by
Shanghai Jiao Tong University Journal Center


Source link

Advanced Care Smart Solution wound
Share. Facebook Twitter Pinterest LinkedIn Tumblr Email

Related Posts

Dual-stage monitoring technique for nanocomposites can streamline manufacturing and property tracking

May 11, 2025

Probing the molecular mechanisms of metastasis

May 10, 2025

AI-powered electronic nose detects diverse scents for health care and environmental applications

May 10, 2025

Microbubble dynamics in boiling water enable precision fluid manipulation

May 9, 2025

Unique molecule may lead to smaller, more efficient computers

May 9, 2025

Depositing quantum dots on corrugated chips improves photodetector capabilities

May 8, 2025

Comments are closed.

Top Articles

Nanoparticles damage coronavirus in unexpected way, paving way for new disinfection technology

Medical

Researchers discover way to reverse brain aging caused by COVID-19

News

Researchers develop nanoparticle treatment approach for optimized pancreatic cancer therapy

Editors Picks

Dual-stage monitoring technique for nanocomposites can streamline manufacturing and property tracking

May 11, 2025

Probing the molecular mechanisms of metastasis

May 10, 2025

AI-powered electronic nose detects diverse scents for health care and environmental applications

May 10, 2025

Microbubble dynamics in boiling water enable precision fluid manipulation

May 9, 2025
About Us
About Us

Your go-to source for the latest nanotechnology breakthroughs. Explore innovations, applications, and implications shaping the future at the molecular level. Stay informed, embrace the nano-revolution.

We're accepting new partnerships right now.

Facebook X (Twitter) Instagram Pinterest
Our Picks

High-precision blood glucose level prediction achieved by few-molecule reservoir computing

May 4, 2024

Incredible New Technique Measures Forces As Small as a Virus With Unprecedented Precision

June 25, 2024

Researchers reveal the ‘three-dimensional vortex’ of zero-dimensional ferroelectrics

June 10, 2024

Subscribe to Updates

Get the latest creative Nano Tech news from Elnano.com

© 2025 Elnano.com - All rights reserved.
  • Contact
  • Privacy Policy
  • Terms & Conditions

Type above and press Enter to search. Press Esc to cancel.

Cleantalk Pixel