Close Menu
  • News
  • Medical
  • Technology
  • Nanomaterials
  • Research
  • Blog
    • Nasiol.com
  • Contact
    • Tech7685@gmail.com
What's Hot

Dual-stage monitoring technique for nanocomposites can streamline manufacturing and property tracking

May 11, 2025

Probing the molecular mechanisms of metastasis

May 10, 2025

AI-powered electronic nose detects diverse scents for health care and environmental applications

May 10, 2025
Facebook X (Twitter) Instagram
Nanotech – Nanomaterials | Medical | Research | News Stories Updated Daily Nanotech – Nanomaterials | Medical | Research | News Stories Updated Daily
  • News
  • Medical
  • Technology
  • Nanomaterials
  • Research
  • Blog
    • Nasiol.com
  • Contact
    • Tech7685@gmail.com
Facebook X (Twitter) Instagram
Nanotech – Nanomaterials | Medical | Research | News Stories Updated Daily Nanotech – Nanomaterials | Medical | Research | News Stories Updated Daily
Home»Medical»A promising frontier in mRNA therapeutics
Medical

A promising frontier in mRNA therapeutics

July 5, 2024No Comments4 Mins Read
Facebook Twitter Pinterest Telegram LinkedIn Tumblr WhatsApp Email
A promising frontier in mRNA therapeutics
Share
Facebook Twitter LinkedIn Pinterest Telegram Email

In recent years, messenger RNA (mRNA) has emerged as a promising avenue for accurate and potent therapeutic interventions. Unlike DNA drugs, mRNA can express genetic information without the risk of integrating into the host genome. However, challenges in delivery efficiency have spurred the development of advanced technologies such as lipid and polymeric nanoparticles, as well as biomimetic carriers inspired by viral mechanisms. These innovations aim to boost mRNA stability, enhance cellular uptake, and pave the way for safer and more effective therapies.

In a recent review article published on May 7, 2024 in Volume 6 of BioDesign Research , a team of scientists led by Professor Feng Li and Professor Xinying Wang from the University of Chinese Academy of Sciences explored the promising frontier of mRNA therapeutics using protein nanocages (PNCs). Explaining the motivation behind their study, Prof. Li elucidates “Within this landscape of advancing mRNA delivery techniques, PNCs have emerged as pivotal tools. These nanostructures offer several advantages crucial for effective drug delivery. Their customizable surface area and volume enable specific targeting, high cargo capacity, and efficient uptake by cells, addressing key challenges in mRNA therapy.”

Moreover, PNCs protect payloads (drugs they carry) from premature degradation and biological interactions, enhancing their potential for tissue-specific delivery. They are biodegradable in vivo (inside living systems) making them a safer choice. Furthermore, PNCs can be biosynthesized, allowing for streamlined assembly of mRNA-loaded carriers. This versatility positions PNCs at the forefront of developing advanced mRNA delivery systems, promising new possibilities for therapeutic applications.

PNCs encompass a diverse array of nanostructures engineered for various biomedical applications, particularly in mRNA delivery. Derived from both natural and synthetic sources, they offer distinct advantages such as precise cargo encapsulation, enhanced stability, and compatibility with biological systems.

See also  Breakthrough nano-shield blocks selective allergic reactions

PNCs like MS2, Qβ, and PP7, developed from bacteriophages (viruses that target bacteria), are examples of natural protein assemblies capable of efficiently encapsulating and delivering mRNA. The bacteriophage-derived PNCs require the addition of specific signals on mRNA for efficient packaging. In contrast, plant-virus derived PNCs such as CCMV contain proteins with charged ends that attract mRNA and aid in packaging. On the other hand, nonviral PNCs engineered from bacterial enzymes or designed de novo (from scratch) present innovative solutions for mRNA delivery. These artificial PNCs are tailored through the directed evolution strategy to optimize packaging efficiency and biocompatibility. Despite promising results in vitro, the transition of nonviral PNCs into effective delivery systems for mammalian cells poses challenges in achieving robust intracellular uptake and controlled cargo release.

Effective delivery of mRNA using PNCs encounters significant hurdles that hinder clinical applications. Chief among these challenges is achieving efficient intracellular delivery. PNCs often get trapped within endosomes (cell organelles involved in transportation), hindering the release of mRNA into the cell, limiting therapeutic efficacy. Additionally, PNCs can trigger immune responses in the host, posing risks for repeated dosing and long-term use. Maintaining mRNA stability within PNCs is also challenging, as structural vulnerabilities may permit enzymatic degradation, compromising therapeutic outcomes.

To overcome these barriers, innovative strategies are being pursued. Enhancing endosomal escape mechanisms is one of the key strategies. Surface modifications with pH-sensitive polymers or charged protein units aim to facilitate efficient mRNA release from endosomes into the cytoplasm. Strategies to mitigate immunogenicity involve using biocompatible materials and incorporating self-proteins on PNC surfaces to evade host immune recognition. Nanotechnological advances enable stabilization of mRNA within PNCs, ensuring protection from enzymatic degradation and optimizing cargo loading for sustained mRNA expression.

See also  'X-ray vision' for investigation of mRNA nanomedicines

Emerging technologies and interdisciplinary approaches offer promising avenues to advance PNC-based mRNA carriers. Artificial intelligence (AI) accelerates the design of tailored PNC structures optimized for mRNA delivery, predicting their behavior in biological environments. Directed evolution refines PNC properties, enhancing stability, targeting efficiency, and reducing immunogenicity through iterative optimization. Synthetic biology empowers precise control over PNC assembly and function, facilitating tailored interactions with biological systems. Leveraging nanomedicine innovations further enhances PNC efficacy in personalized medicine.

A hopeful Prof. Wang concludes, “Despite the challenges we face, the convergence of emerging technologies and interdisciplinary efforts holds transformative potential for PNC-based mRNA therapeutics. By overcoming delivery barriers, reducing immunogenicity, stabilizing mRNA, and leveraging advancements in AI, directed evolution, synthetic biology, and nanotechnology, researchers can fully unlock the therapeutic promise of PNCs,”

In summary, continued collaboration and research are essential to converting these innovations into safe, effective treatments, heralding a new era of personalized medicine and improved patient outcomes.

Source:

Nanjing Agricultural University The Academy of Science

Journal reference:

Wang, X., et al. (2024). mRNA Delivery Systems Based on Protein Nanocages: How Far Can We Go? Biodesign Research/Biodesign Research. doi.org/10.34133/bdr.0032.

Source link

Frontier mRNA Promising therapeutics
Share. Facebook Twitter Pinterest LinkedIn Tumblr Email

Related Posts

Combined organ-specific mRNA and lipid nanoparticle therapy could repair damaged lungs

March 4, 2025

Next-generation mRNA vaccine delivery system uses biodegradable polymers

February 16, 2025

BEND lipids improve LNP mRNA delivery and gene editing

February 5, 2025

Peptide-guided nanoparticles deliver mRNA to neurons

December 26, 2024

Lipid nanoparticle delivers potential mRNA cure for pre-eclampsia

December 18, 2024

Engineers refine lipid nanoparticles for better mRNA therapies

December 1, 2024

Comments are closed.

Top Articles
News

Diamond dust as a potential alternative to contrast agent gadolinium in magnetic resonance imaging

News

New synthesis technology for single-crystal 2D semiconductors could spawn next-generation devices

News

The Role of Nanochannels in Energy Storage

Editors Picks

Dual-stage monitoring technique for nanocomposites can streamline manufacturing and property tracking

May 11, 2025

Probing the molecular mechanisms of metastasis

May 10, 2025

AI-powered electronic nose detects diverse scents for health care and environmental applications

May 10, 2025

Microbubble dynamics in boiling water enable precision fluid manipulation

May 9, 2025
About Us
About Us

Your go-to source for the latest nanotechnology breakthroughs. Explore innovations, applications, and implications shaping the future at the molecular level. Stay informed, embrace the nano-revolution.

We're accepting new partnerships right now.

Facebook X (Twitter) Instagram Pinterest
Our Picks

Researchers realize multi-heterojunctioned plastics with high thermoelectric figure of merit

August 6, 2024

New research reveals terahertz waves’ impact on dynamics of nanoconfined water molecules

May 8, 2024

Checkmate! Quantum Computing Breakthrough Via Scalable Quantum Dot Chessboard

September 5, 2023

Subscribe to Updates

Get the latest creative Nano Tech news from Elnano.com

© 2025 Elnano.com - All rights reserved.
  • Contact
  • Privacy Policy
  • Terms & Conditions

Type above and press Enter to search. Press Esc to cancel.

Cleantalk Pixel