Close Menu
  • News
  • Medical
  • Technology
  • Nanomaterials
  • Research
  • Blog
    • Nasiol.com
  • Contact
    • Tech7685@gmail.com
What's Hot

Dual-stage monitoring technique for nanocomposites can streamline manufacturing and property tracking

May 11, 2025

Probing the molecular mechanisms of metastasis

May 10, 2025

AI-powered electronic nose detects diverse scents for health care and environmental applications

May 10, 2025
Facebook X (Twitter) Instagram
Nanotech – Nanomaterials | Medical | Research | News Stories Updated Daily Nanotech – Nanomaterials | Medical | Research | News Stories Updated Daily
  • News
  • Medical
  • Technology
  • Nanomaterials
  • Research
  • Blog
    • Nasiol.com
  • Contact
    • Tech7685@gmail.com
Facebook X (Twitter) Instagram
Nanotech – Nanomaterials | Medical | Research | News Stories Updated Daily Nanotech – Nanomaterials | Medical | Research | News Stories Updated Daily
Home»News»A novel avenue for engineering 2D MXene family via precious metals atomic layer deposition techniques
News

A novel avenue for engineering 2D MXene family via precious metals atomic layer deposition techniques

January 10, 2024No Comments3 Mins Read
Facebook Twitter Pinterest Telegram LinkedIn Tumblr WhatsApp Email
A novel avenue for engineering 2D MXene family via precious metals atomic layer deposition techniques
Share
Facebook Twitter LinkedIn Pinterest Telegram Email
Figure 1. A schematic of atomic layer deposition process and step coverage of ALD-Ru film. Credit: Advanced Science (2023). DOI: 10.1002/advs.202206355

A team of researchers, led by Professor Soo-Hyun Kim in the Graduate School of Semiconductors Materials and Devices Engineering and the Department of Materials Science and Engineering at UNIST has made significant progress in precisely controlling precious metals (Ru, Ir, Pt, Pd) incorporation by atomic layer deposition (ALD).

In this study, published in Advanced Science, the team successfully developed unique and unexplored two-dimensional (2D) nanomaterials V-MXene for the very first time coupled with precious metal ruthenium (Ru) through the ALD process. This breakthrough holds immense promise for various applications, both contact and non-contact mode of real-time temperature sensing at the human-machine interface.

The integration of Ru-engineered V-MXene through ALD has demonstrated a remarkable 300% enhancement in device sensing performance and durability, surpassing the capabilities of pristine V-MXene. This advancement not only paves the way towards the creation multifunctional, cutting-edge personal health care devices, but also holds great promises for the progression of clean energy conversion and storage technologies.

Moreover, the utilization of the industrially scalable ALD technique used in this research enables precise engineering of MXene surfaces with precious metals, thereby opening up new possibilities for future applications.

  • Engineering 2D MXene family via precious metals atomic layer deposition techniques
    Figure 2. As-synthesized bulk quantity delaminated V2CTX MXene (DM-V2CTX) to develop Ru-ALD Engineered DM-V2CTX (Ru@DM-V2CTX) for real-time skin temperature sensing, noncontact touch, proximity sensing, and breathing monitoring. Credit: Advanced Science (2023). DOI: 10.1002/advs.202206355
  • Engineering 2D MXene family via precious metals atomic layer deposition techniques
    Figure 3. Ru-ALD engineered DM-V2CTX MXene microstructure and elemental mapping. (A) HAADF STEM showing the presence of layered DM-V2CTX MXene structure and the distribution of Ru atoms/clusters, (B, C) HR-STEM of the well-defined layered structure of DM-V2CTX MXene throughout the sample and inset (B) confirms the opening of V2CTX MXene layers after the removal of Al-layers, (D) HR-STEM of both layered DM-V2CTX MXene and Ru lattices, (E) Super-X EDS elemental spectra confirming the elements V, C, Ru, and (F–I) their corresponding elemental mapping images. The atoms in Fig. 2B inset are shown with the same colors as illustrated in Figure 1 after the etching and delamination process. Credit: Advanced Science (2023). DOI: 10.1002/advs.202206355

“We are thrilled by the potential of this breakthrough,” said Professor Kim. “The precision-enabled integration of precious metals opens up a whole new world of possibilities in the development of versatile, next-generation, and safe personal health care devices, as well as clean energy conversion and storage systems, with the potential to substantially impact people’s lives.”

Dr. Debananda Mohapatra, an Associate Research Professor in the Graduate School of Semiconductors Materials and Devices Engineering at UNIST, emphasized the ease and versatility of engineering MXene surfaces with precious metals, using industrially favored ALD techniques. He also highlighted the potential for real-time applications in wearable health care devices and clean energy fields. He said, “This successful work marks the beginning of a thriving research field of focused on advancing 2D nanomaterials engineering and applications empowered by ALD.”

See also  MXene production goes green: Electricity replaces toxic acid

The research team further highlighted the vast potential for exploring the less investigated non-Ti-MXenes, such as Mo, V, and Nb-based MXenes, for surface-internal structure engineering using selective precious metals (Ru, Ir, Pt, Pd) ALD processes.

By incorporating single atoms or atomic clusters of precious metals (Ru, Ir, Pt, and Pd), the resulting surface activity and the sensitivity/energy performance per atom can be significantly enhanced. This approach minimizes the use of these scarce and expensive precious metals.

Provided by
Ulsan National Institute of Science and Technology



Source link

atomic Avenue deposition engineering family layer metals MXene precious Techniques
Share. Facebook Twitter Pinterest LinkedIn Tumblr Email

Related Posts

Dual-stage monitoring technique for nanocomposites can streamline manufacturing and property tracking

May 11, 2025

Probing the molecular mechanisms of metastasis

May 10, 2025

AI-powered electronic nose detects diverse scents for health care and environmental applications

May 10, 2025

Microbubble dynamics in boiling water enable precision fluid manipulation

May 9, 2025

Unique molecule may lead to smaller, more efficient computers

May 9, 2025

Depositing quantum dots on corrugated chips improves photodetector capabilities

May 8, 2025

Comments are closed.

Top Articles
Medical

Elevated cytokines found in the blood of long COVID sufferers explain heart problems

News

Ultrafast Light Unlocks New Properties in Low-Dimensional Materials

News

Novel water-based adhesive nanocomposite technology developed

Editors Picks

Dual-stage monitoring technique for nanocomposites can streamline manufacturing and property tracking

May 11, 2025

Probing the molecular mechanisms of metastasis

May 10, 2025

AI-powered electronic nose detects diverse scents for health care and environmental applications

May 10, 2025

Microbubble dynamics in boiling water enable precision fluid manipulation

May 9, 2025
About Us
About Us

Your go-to source for the latest nanotechnology breakthroughs. Explore innovations, applications, and implications shaping the future at the molecular level. Stay informed, embrace the nano-revolution.

We're accepting new partnerships right now.

Facebook X (Twitter) Instagram Pinterest
Our Picks

A promising weapon against superbugs

November 19, 2023

Carbon Nanotubes for Energy Storage Applications

October 18, 2024

Generation of lossy mode resonances using perovskite nanofilms

December 31, 2023

Subscribe to Updates

Get the latest creative Nano Tech news from Elnano.com

© 2025 Elnano.com - All rights reserved.
  • Contact
  • Privacy Policy
  • Terms & Conditions

Type above and press Enter to search. Press Esc to cancel.

Cleantalk Pixel