Close Menu
  • News
  • Medical
  • Technology
  • Nanomaterials
  • Research
  • Blog
    • Nasiol.com
  • Contact
    • Tech7685@gmail.com
What's Hot

In vivo 3D printing using sound holds promise for precise drug delivery, wound healing and more

May 18, 2025

Sub-millimeter waveguide shrinks augmented-reality glasses

May 17, 2025

A way to make super-smooth materials

May 17, 2025
Facebook X (Twitter) Instagram
Nanotech – Nanomaterials | Medical | Research | News Stories Updated Daily Nanotech – Nanomaterials | Medical | Research | News Stories Updated Daily
  • News
  • Medical
  • Technology
  • Nanomaterials
  • Research
  • Blog
    • Nasiol.com
  • Contact
    • Tech7685@gmail.com
Facebook X (Twitter) Instagram
Nanotech – Nanomaterials | Medical | Research | News Stories Updated Daily Nanotech – Nanomaterials | Medical | Research | News Stories Updated Daily
Home»News»A new twist on interference patterns
News

A new twist on interference patterns

April 6, 2025No Comments3 Mins Read
Facebook Twitter Pinterest Telegram LinkedIn Tumblr WhatsApp Email
A new twist on interference patterns
Share
Facebook Twitter LinkedIn Pinterest Telegram Email
Researchers discover brand new one-dimensional diffraction patterns in two-dimensional nanomaterials, with exciting implications. Credit: Institute of Industrial Science, The University of Tokyo

One of the simplest and most beautiful naturally occurring patterns can be observed when light is shined through a pair of slightly misaligned periodic structures. This phenomenon, known as the moiré effect, is not only pretty to look at, but also has important consequences for the properties of materials.

In an article published in ACS Nano, a team led by researchers from the Institute of Industrial Science, The University of Tokyo, announced the discovery of a previously unseen moiré pattern: a series of periodic one-dimensional bands in tungsten ditelluride bilayers.

In nanomaterials, moiré patterns depend on the relative angle between two layers of atoms; by adjusting the angle between the lattices, different patterns can be realized. Typically, this twist angle is small—only a few degrees—since the characteristic size of the pattern decreases with increasing twist angle. However, when the researchers experimented with larger twist angles, something unexpected happened.

“The resulting pattern is a series of parallel stripes,” says Yijin Zhang, one of the corresponding authors of the study.

“Typical interference patterns look like two-dimensional arrays of bright spots. These one-dimensional bands are completely distinct from all previously known patterns.”

This phenomenon can partly be explained by the choice of material. Tungsten ditelluride has a very unconventional crystal structure, consisting of distorted quadrilaterals rather than an ordered honeycomb-like lattice.

“A more disordered lattice means fewer constraints on the twist angle,” explains Tomoki Machida, senior author. “By choosing to study this material, we are free to explore the patterns that emerge when the angle is increased significantly.”

Through theoretical modeling and transmission electron microscopy experiments, the team was able to confirm that the one-dimensional bands occur precisely at twist angles of 61.767º and 58.264º. Perturbing the angle even by a tenth of a degree causes the interference pattern to revert to the traditional bright spots.

See also  A twist on atomic sheets to create new materials

“Moiré patterns govern the optoelectronic properties of materials, so this discovery opens the door for engineering materials with uniquely anisotropic properties,” says Zhang. “For example, it may soon be possible to tune nanomaterials to conduct heat or electricity in a particular direction.”

The researchers hypothesize that other materials also possess similar one-dimensional patterns at large twist angles and are currently searching for them, as well as devising ways to apply their discovery to the study of one-dimensional phenomena. Regardless of what they find, more interesting interference patterns are almost certain to follow.

Provided by
University of Tokyo



Source link

interference Patterns twist
Share. Facebook Twitter Pinterest LinkedIn Tumblr Email

Related Posts

In vivo 3D printing using sound holds promise for precise drug delivery, wound healing and more

May 18, 2025

Sub-millimeter waveguide shrinks augmented-reality glasses

May 17, 2025

A way to make super-smooth materials

May 17, 2025

New tool unlocks the body’s ‘messages in a bottle’ to detect and treat disease

May 16, 2025

Synthetic nanoparticle eyedrops help corneas heal after chemical or inflammatory damage

May 16, 2025

Micropipette uses targeted ion delivery to activate individual neurons

May 15, 2025

Comments are closed.

Top Articles
News

Sustainable nanofiber coating can extend fruit shelf life

News

Extracellular vesicles that guide zebrafish embryonic development may have potential for human medicine

News

Novel nano-vaccine administered as nasal spray found to be effective against all major COVID-19 variants

Editors Picks

In vivo 3D printing using sound holds promise for precise drug delivery, wound healing and more

May 18, 2025

Sub-millimeter waveguide shrinks augmented-reality glasses

May 17, 2025

A way to make super-smooth materials

May 17, 2025

New tool unlocks the body’s ‘messages in a bottle’ to detect and treat disease

May 16, 2025
About Us
About Us

Your go-to source for the latest nanotechnology breakthroughs. Explore innovations, applications, and implications shaping the future at the molecular level. Stay informed, embrace the nano-revolution.

We're accepting new partnerships right now.

Facebook X (Twitter) Instagram Pinterest
Our Picks

Decoding how molecules ‘talk’ to each other to develop new nanotechnologies

August 20, 2023

Scientists design novel nonlinear circuit to harvest clean power using graphene

August 27, 2023

What is Stanene?

August 9, 2024

Subscribe to Updates

Get the latest creative Nano Tech news from Elnano.com

© 2025 Elnano.com - All rights reserved.
  • Contact
  • Privacy Policy
  • Terms & Conditions

Type above and press Enter to search. Press Esc to cancel.

Cleantalk Pixel