Close Menu
  • News
  • Medical
  • Technology
  • Nanomaterials
  • Research
  • Blog
    • Nasiol.com
  • Contact
    • Tech7685@gmail.com
What's Hot

Ballistic electrons chart a new course for next-gen terahertz devices

June 6, 2025

‘Stealthy’ lipid nanoparticles give mRNA vaccines a makeover

June 5, 2025

Single-layer waveguide display uses achromatic metagratings for more compact augmented reality eyewear

June 5, 2025
Facebook X (Twitter) Instagram
Nanotech – Nanomaterials | Medical | Research | News Stories Updated Daily Nanotech – Nanomaterials | Medical | Research | News Stories Updated Daily
  • News
  • Medical
  • Technology
  • Nanomaterials
  • Research
  • Blog
    • Nasiol.com
  • Contact
    • Tech7685@gmail.com
Facebook X (Twitter) Instagram
Nanotech – Nanomaterials | Medical | Research | News Stories Updated Daily Nanotech – Nanomaterials | Medical | Research | News Stories Updated Daily
Home»News»A New “Metallic” 2D Material – Molybdenene
News

A New “Metallic” 2D Material – Molybdenene

September 22, 2023No Comments4 Mins Read
Facebook Twitter Pinterest Telegram LinkedIn Tumblr WhatsApp Email
A New “Metallic” 2D Material – Molybdenene
Share
Facebook Twitter LinkedIn Pinterest Telegram Email

Scientists have introduced “molybdenene,” a unique 2D metallic material. Exhibiting impressive heat resistance and potential in enhancing battery performance, molybdenene also shows promise in atomic microscopy and spectroscopy applications. Credit & Copyright: Sahu, T.K., Kumar, N., Chahal, S. et al., Nat. Nanotechnol. (2023), https://doi.org/10.1038/s41565-023-01484-2 (CC BY 4.0)

Researchers have developed a new 2D material named “molybdenene.” Composed of a single atomic layer of molybdenum atoms, this material stands out due to its metallic nature.

Two-dimensional materials like graphene show fascinating properties such as superconductivity, extraordinary strength, and exotic quantum phenomena. Scientists at Forschungszentrum Jülich, together with partners from the Indian Institute of Technology in Patna and the Australian University of Newcastle, have now created a special material of this kind that exhibits a metallic character. It consists of just one atomic layer of molybdenum atoms and is also referred to as “molybdenene.”

Comparison With Graphene

The scientists succeeded in producing a thin sheet of the metal molybdenum, which is just one atomic layer thick. The new material is thus similarly thin as graphene, probably the best-known 2D material. The latter consists of carbon and was first isolated in 2004. The discovery aroused great attention because graphene conducts electricity and heat far better than copper and is a hundred times more stable than steel. At the same time, it is exceptionally light and flexible. Due to its special 2D structure, graphene also exhibits some unusual electromagnetic effects that could enable groundbreaking innovations in the field of quantum technology.

Molybdenene Whiskers

Electron microscope images of the hair-shaped structures, also known as “whiskers,” which contain the thin molybdenene layers. Credit & Copyright: Sahu, T.K., Kumar, N., Chahal, S. et al., Nat. Nanotechnol. (2023), https://doi.org/10.1038/s41565-023-01484-2 (CC BY 4.0)

The Uniqueness of Molybdenene

In recent years, other 2D materials such as phosphorene or germanene have been introduced. Like molybdenene, they exhibit some impressive properties, while the latter still differs from other 2D materials in some aspects. “Many 2D materials are sensitive to heat, but molybdenene is not. Moreover, this is the first metallic 2D material where free-standing layers could be prepared” explains Prof. Ilia Valov from the Peter Grünberg Institute (PGI-7) at Forschungszentrum Jülich.

Molybdenene Surface Microscopic View

High-resolution electron microscope image of the molybdenene surface. Credit & Copyright: Sahu, T.K., Kumar, N., Chahal, S. et al., Nat. Nanotechnol. (2023), https://doi.org/10.1038/s41565-023-01484-2 (CC BY 4.0)

Creation and Potential Applications

The researchers created the new 2D material using a microwave, in which they heated a mixture of molybdenum sulfide (MoS2) and graphene to incandescence at a temperature of around 3000 degrees Celsius. In a reaction driven by the microwave electric field, finely branched hair structures, also known as “whiskers,” were formed in which the tapered molybdenum layers can be found.

In the first tests, the scientists could already observe a variety of useful properties. “Molybdenene is mechanically extremely stable. It could be used, for example, as a coating for electrodes to make batteries even more powerful and robust,” explains Ilia Valov. The researchers expect that the material has further exotic electronic properties, similar to graphene, because of its special 2D structure. Due to its metallic character, it also has freely moving electrons. These accumulate on the two side sides of the molybdenene, which makes the material an interesting candidate for catalysts to accelerate chemical reactions.

Hair-Shaped Structures of Molybdenene

Hair-shaped structures of molybdenene (right) are formed in the microwave (left). Credit & Copyright: Sahu, T.K., Kumar, N., Chahal, S. et al, Nat. Nanotechnol. (2023), https://doi.org/10.1038/s41565-023-01484-2 (CC BY 4.0)

Practical Implementations and Collaborations

In collaboration with the Indian Institute of Technology in Patna and the Australian University of Newcastle, the researchers have already been able to develop a practical scientific application for molybdenene. Thanks to its stability and excellent electrical and thermal conductivity, it is ideally suited as a measuring tip for atomic force microscopy (AFM) and surface-enhanced RAMAN spectroscopy (SERS). Initial sample recordings show that molybdenene offers various advantages over established tip materials and, because of its thin, flat shape, is capable of providing particularly good protection against unwanted interference signals.

Reference: “Microwave synthesis of molybdenene from MoS2” by Tumesh Kumar Sahu, Nishant Kumar, Sumit Chahal, Rajkumar Jana, Sumana Paul, Moumita Mukherjee, Amir H. Tavabi, Ayan Datta, Rafal E. Dunin-Borkowski, Ilia Valov, Alpana Nayak and Prashant Kumar, 4 September 2023, Nature Nanotechnology.
DOI: 10.1038/s41565-023-01484-2


Source link

See also  Unlocking Graphene’s Potential: Oxygen-Free Methods Revolutionize Production
Material Metallic Molybdenene
Share. Facebook Twitter Pinterest LinkedIn Tumblr Email

Related Posts

Ballistic electrons chart a new course for next-gen terahertz devices

June 6, 2025

‘Stealthy’ lipid nanoparticles give mRNA vaccines a makeover

June 5, 2025

Single-layer waveguide display uses achromatic metagratings for more compact augmented reality eyewear

June 5, 2025

2D hybrid material integrates graphene and silica glass for next-generation electronics

June 4, 2025

Zeolite nanopore model links crystal size to metal cluster migration and catalyst performance

June 4, 2025

Spontaneous symmetry breaking in electron systems proves elusive

June 3, 2025

Comments are closed.

Top Articles
News

Gold nanodots can help boost cancer cell response to ultrasound treatment

Backyard insect inspires invisibility devices, next gen tech

News

Insights into Drug Delivery and Targeting

Editors Picks

Ballistic electrons chart a new course for next-gen terahertz devices

June 6, 2025

‘Stealthy’ lipid nanoparticles give mRNA vaccines a makeover

June 5, 2025

Single-layer waveguide display uses achromatic metagratings for more compact augmented reality eyewear

June 5, 2025

2D hybrid material integrates graphene and silica glass for next-generation electronics

June 4, 2025
About Us
About Us

Your go-to source for the latest nanotechnology breakthroughs. Explore innovations, applications, and implications shaping the future at the molecular level. Stay informed, embrace the nano-revolution.

We're accepting new partnerships right now.

Facebook X (Twitter) Instagram Pinterest
Our Picks

Ultra-thin, flexible silicone nanosensor could have huge impact on brain injury treatment

April 22, 2025

New electron microscopy technique for thermal diffusion measurements

March 21, 2024

Molybdenene – Properties and Applications

December 20, 2023

Subscribe to Updates

Get the latest creative Nano Tech news from Elnano.com

© 2025 Elnano.com - All rights reserved.
  • Contact
  • Privacy Policy
  • Terms & Conditions

Type above and press Enter to search. Press Esc to cancel.

Cleantalk Pixel