Close Menu
  • News
  • Medical
  • Technology
  • Nanomaterials
  • Research
  • Blog
    • Nasiol.com
  • Contact
    • Tech7685@gmail.com
What's Hot

New insights show universal applicability of carbyne as a sensor

May 31, 2025

A new molecular model of bilayer graphene with higher semiconducting properties

May 31, 2025

5 Nanomaterial Innovations That Didn’t Deliver (Yet)

May 30, 2025
Facebook X (Twitter) Instagram
Nanotech – Nanomaterials | Medical | Research | News Stories Updated Daily Nanotech – Nanomaterials | Medical | Research | News Stories Updated Daily
  • News
  • Medical
  • Technology
  • Nanomaterials
  • Research
  • Blog
    • Nasiol.com
  • Contact
    • Tech7685@gmail.com
Facebook X (Twitter) Instagram
Nanotech – Nanomaterials | Medical | Research | News Stories Updated Daily Nanotech – Nanomaterials | Medical | Research | News Stories Updated Daily
Home»News»Incredible New Technique Measures Forces As Small as a Virus With Unprecedented Precision
News

Incredible New Technique Measures Forces As Small as a Virus With Unprecedented Precision

June 25, 2024No Comments3 Mins Read
Facebook Twitter Pinterest Telegram LinkedIn Tumblr WhatsApp Email
Incredible New Technique Measures Forces As Small as a Virus With Unprecedented Precision
Share
Facebook Twitter LinkedIn Pinterest Telegram Email

Super-resolved photonic force microscopy for detecting ultra-weak interaction forces between nanoparticles and surfaces. Credit: Lei Ding

A collaborative research team has developed a novel method to measure minuscule nanoscale forces in liquids, using a technique that significantly enhances measurement sensitivity and resolution. This breakthrough could transform biological research and advance biomedical technology.

Groundbreaking research has introduced a new method for measuring extremely small forces at the nanoscale within aqueous environments, expanding our understanding of the microscopic realm.

The significant nanotechnology advance was achieved by researchers from Beihang University in China with RMIT University and other leading institutions including the Australian National University and University of Technology Sydney.

The new technique, involving a super-resolved photonic force microscope (SRPFM), is capable of detecting forces in water as small as 108.2 attonewtons—a scale so minute that it compares to measuring the weight of a virus.

Lead researcher from Beihang University, Professor Fan Wang, said the key to this ultra-sensitive measurement lay in the use of lanthanide-doped nanoparticles, trapped by optical tweezers, which are then used to probe the minute forces at play within biological systems.

Challenges in Nanoscale Measurements

“Understanding these tiny forces is crucial for the study of biomechanical processes, which are fundamental to the workings of living cells,” he said. “Until now, measuring such small forces with high precision in a liquid environment was a significant challenge due to factors like probe heating and weak signal issues.”

The SRPFM technique developed by Wang and his team addresses these challenges by employing advanced nanotechnology and computational techniques.

By leveraging neural network-empowered super-resolution localization, the team is able to precisely measure how the nanoparticles are displaced by tiny forces within a fluid medium.

See also  Precision Medicine for Cystic Fibrosis and Vision Loss

Study co-first author from RMIT University, Dr Lei Ding, said this innovation not only enhances the resolution and sensitivity of force measurements but also minimizes the energy required to trap the nanoparticles, thereby reducing potential damage to biological samples.

“Our method can detect forces down to 1.8 femtonewtons per square root of the bandwidth, which is near the theoretical limit imposed by thermal noise,” Ding said.

Implications and Applications

The implications of this research are vast, added Dr Xuchen Shan, co-first author from Beihang University

“By providing a new tool to measure biological events at the molecular level, this technique could revolutionize our understanding of a host of biological and physical phenomena,” Shan said.

This includes everything from how proteins function within human cells to new methods of detecting diseases at an early stage.

The study also explored the application of this technology in measuring electrophoresis forces acting on single nanoparticles and the interaction forces between DNA molecules and interfaces, crucial for the development of advanced biomedical engineering techniques.

The team’s findings not only pave the way for new scientific discoveries but also have potential applications in the development of new nanotechnological tools and improving the sensitivity of biomedical diagnostics.

Reference: “Sub-femtonewton force sensing in solution by super-resolved photonic force microscopy” by Xuchen Shan, Lei Ding, Dajing Wang, Shihui Wen, Jinlong Shi, Chaohao Chen, Yang Wang, Hongyan Zhu, Zhaocun Huang, Shen S. J. Wang, Xiaolan Zhong, Baolei Liu, Peter John Reece, Wei Ren, Weichang Hao, Xunyu Lu, Jie Lu, Qian Peter Su, Lingqian Chang, Lingdong Sun, Dayong Jin, Lei Jiang and Fan Wang, 14 June 2024, Nature Photonics.
DOI: 10.1038/s41566-024-01462-7

See also  Researchers develop groundbreaking technique to detect chemoresistance using ultrasound


Source link

Forces Incredible measures precision small Technique Unprecedented virus
Share. Facebook Twitter Pinterest LinkedIn Tumblr Email

Related Posts

New insights show universal applicability of carbyne as a sensor

May 31, 2025

A new molecular model of bilayer graphene with higher semiconducting properties

May 31, 2025

5 Nanomaterial Innovations That Didn’t Deliver (Yet)

May 30, 2025

Scientists identify new 2D copper boride material with unique atomic structure

May 30, 2025

Nanoscale biosensor lets scientists monitor molecules in real time

May 30, 2025

How should we govern nanotechnology?

May 29, 2025

Comments are closed.

Top Articles
News

Bacteria use nano-spearguns to retaliate against attacks

News

The Role of Nanotechnology in Biomedical Wearable Sensors

News

Researchers identify the principle behind ‘soft mechanoluminescent complex’

Editors Picks

New insights show universal applicability of carbyne as a sensor

May 31, 2025

A new molecular model of bilayer graphene with higher semiconducting properties

May 31, 2025

5 Nanomaterial Innovations That Didn’t Deliver (Yet)

May 30, 2025

Scientists identify new 2D copper boride material with unique atomic structure

May 30, 2025
About Us
About Us

Your go-to source for the latest nanotechnology breakthroughs. Explore innovations, applications, and implications shaping the future at the molecular level. Stay informed, embrace the nano-revolution.

We're accepting new partnerships right now.

Facebook X (Twitter) Instagram Pinterest
Our Picks

Thickness-Dependent Stress in Indium Tin Oxide Thin Films

January 11, 2024

Fabricating 2D Materials Through Chemical Vapor Deposition

January 29, 2024

Engineering perovskite materials at the atomic level paves way for new lasers, LEDs

October 21, 2024

Subscribe to Updates

Get the latest creative Nano Tech news from Elnano.com

© 2025 Elnano.com - All rights reserved.
  • Contact
  • Privacy Policy
  • Terms & Conditions

Type above and press Enter to search. Press Esc to cancel.

Cleantalk Pixel