Close Menu
  • News
  • Medical
  • Technology
  • Nanomaterials
  • Research
  • Blog
    • Nasiol.com
  • Contact
    • Tech7685@gmail.com
What's Hot

Self-stirring nanoreactors enhance reaction efficiency for chemical synthesis

June 7, 2025

Ultrathin resonators set new standard for efficient light manipulation

June 7, 2025

Naturally derived nanoparticles show promise against cardiovascular and kidney disease

June 6, 2025
Facebook X (Twitter) Instagram
Nanotech – Nanomaterials | Medical | Research | News Stories Updated Daily Nanotech – Nanomaterials | Medical | Research | News Stories Updated Daily
  • News
  • Medical
  • Technology
  • Nanomaterials
  • Research
  • Blog
    • Nasiol.com
  • Contact
    • Tech7685@gmail.com
Facebook X (Twitter) Instagram
Nanotech – Nanomaterials | Medical | Research | News Stories Updated Daily Nanotech – Nanomaterials | Medical | Research | News Stories Updated Daily
Home»News»Lipid nanoparticle-mRNA regimen reverses inflammation and aids recovery from diabetic wounds in mice
News

Lipid nanoparticle-mRNA regimen reverses inflammation and aids recovery from diabetic wounds in mice

May 27, 2024No Comments3 Mins Read
Facebook Twitter Pinterest Telegram LinkedIn Tumblr WhatsApp Email
Lipid nanoparticle-mRNA regimen reverses inflammation and aids recovery from diabetic wounds in mice
Share
Facebook Twitter LinkedIn Pinterest Telegram Email
Mice treated with trisulfide-derived lipid nanoparticle mRNA therapy showed accelerated wound healing compared to untreated mice. Credit: Lab of Yizhou Dong, Ph.D., at Icahn Mount Sinai.

Researchers at the Icahn School of Medicine at Mount Sinai have designed a regenerative medicine therapy to speed up diabetic wound repair. Using tiny fat particles loaded with genetic instructions to calm down inflammation, the treatment was shown to target problem-causing cells and reduce swelling and harmful molecules in mouse models of damaged skin.

Details on their findings were published in a paper titled “Accelerating diabetic wound healing by ROS-scavenging lipid nanoparticle-mRNA formulation” in the May 20 online issue of the Proceedings of the National Academy of Sciences.

Diabetic wounds, often resistant to conventional treatments, pose serious health risks to millions of people worldwide. Immune cells known as macrophages, which are supposed to help, end up causing inflammation instead. This inflammation harms other cells and makes it harder for the wound to heal properly and quickly.

Using lipid nanoparticles (LNPs) loaded with RNA encoding IL-4, a cell-to-cell signaling protein known as a cytokine, the therapy targeted dysfunctional macrophages while simultaneously reducing inflammation and “reactive oxygen species” (ROS) in diabetic wounds.

ROS molecules are produced naturally in the body during various metabolic processes and play roles in cell signaling and immune responses. However, excessive ROS production can lead to oxidative stress, causing damage to cells, proteins, and DNA. This stress is associated with various diseases and conditions, including inflammation and aging.

“In preclinical models, we basically showed the therapy’s ability to reprogram pro-inflammatory macrophages into reparative ones, leading to improved wound healing outcomes,” says Yizhou Dong, Ph.D., corresponding author of the study, Professor of Immunology and Immunotherapy, and a member of the Icahn Genomics Institute and the Marc and Jennifer Lipschultz Precision Immunology Institute at Icahn Mount Sinai.

See also  Brain-inspired nanotech offers new path for smarter electronics

“Dysfunctional macrophages drive diabetic non-healing wounds, but we can reprogram them to stop the damage and instead help the healing process. We aim to promote faster and more effective wound closure by reprogramming these cells and modulating the inflammatory environment.”

Earlier this year, in a related study, Dr. Dong and colleagues reported on lipid nanoparticles that enhanced the tissue engineering and regeneration activity of adipose stem cells for treating diabetic wounds (Nature Communications).

While the results of the current study are encouraging, the researchers emphasize the need for a rigorous randomized controlled clinical trial to confirm safety and efficacy in humans.

“Our ultimate goal is to translate these findings into tangible benefits for diabetic patients. With further research and validation, this RNA-LNP therapy could potentially revolutionize diabetic wound management with one easily scalable application of a comparatively inexpensive therapeutic agent,” says Dr. Dong.

“The study also suggests the potential for RNA-LNP therapeutics to be more generally designed to reprogram disease-causing macrophages in an organism, as pro-inflammatory macrophages are implicated in a wide range of diseases.”

Provided by
The Mount Sinai Hospital



Source link

aids diabetic inflammation Lipid mice nanoparticlemRNA recovery regimen reverses wounds
Share. Facebook Twitter Pinterest LinkedIn Tumblr Email

Related Posts

Self-stirring nanoreactors enhance reaction efficiency for chemical synthesis

June 7, 2025

Ultrathin resonators set new standard for efficient light manipulation

June 7, 2025

Naturally derived nanoparticles show promise against cardiovascular and kidney disease

June 6, 2025

Ballistic electrons chart a new course for next-gen terahertz devices

June 6, 2025

‘Stealthy’ lipid nanoparticles give mRNA vaccines a makeover

June 5, 2025

Single-layer waveguide display uses achromatic metagratings for more compact augmented reality eyewear

June 5, 2025

Comments are closed.

Top Articles

New Dual-Functional Supramolecular Structures Unveiled

Research

How CVCs are helping pave the nano path to market

Technology

Spraying rice with sunscreen particles during heat waves boosts growth

Editors Picks

Self-stirring nanoreactors enhance reaction efficiency for chemical synthesis

June 7, 2025

Ultrathin resonators set new standard for efficient light manipulation

June 7, 2025

Naturally derived nanoparticles show promise against cardiovascular and kidney disease

June 6, 2025

Ballistic electrons chart a new course for next-gen terahertz devices

June 6, 2025
About Us
About Us

Your go-to source for the latest nanotechnology breakthroughs. Explore innovations, applications, and implications shaping the future at the molecular level. Stay informed, embrace the nano-revolution.

We're accepting new partnerships right now.

Facebook X (Twitter) Instagram Pinterest
Our Picks

Monumental $11.5 million gift will enable FAU to find a cure for amyloidosis

August 10, 2023

New Laser Technique Enables Precise Fabrication of Nanoscale Photonic Crystals

August 9, 2023

Study shows how organic molecules impact gold nanoparticles’ electrochemical properties

July 24, 2024

Subscribe to Updates

Get the latest creative Nano Tech news from Elnano.com

© 2025 Elnano.com - All rights reserved.
  • Contact
  • Privacy Policy
  • Terms & Conditions

Type above and press Enter to search. Press Esc to cancel.

Cleantalk Pixel