Close Menu
  • News
  • Medical
  • Technology
  • Nanomaterials
  • Research
  • Blog
    • Nasiol.com
  • Contact
    • Tech7685@gmail.com
What's Hot

Advanced AFM Imaging of 200 mm Samples

June 11, 2025

Semi-damascene integration approach enables achievement of 16nm pitch Ru lines with record-low resistance

June 11, 2025

Engineered nanostructures boost CAR T-cell potency and longevity for cancer therapy

June 11, 2025
Facebook X (Twitter) Instagram
Nanotech – Nanomaterials | Medical | Research | News Stories Updated Daily Nanotech – Nanomaterials | Medical | Research | News Stories Updated Daily
  • News
  • Medical
  • Technology
  • Nanomaterials
  • Research
  • Blog
    • Nasiol.com
  • Contact
    • Tech7685@gmail.com
Facebook X (Twitter) Instagram
Nanotech – Nanomaterials | Medical | Research | News Stories Updated Daily Nanotech – Nanomaterials | Medical | Research | News Stories Updated Daily
Home»News»Thermal properties of new 2D materials for microchips can now be measured well
News

Thermal properties of new 2D materials for microchips can now be measured well

April 25, 2024No Comments3 Mins Read
Facebook Twitter Pinterest Telegram LinkedIn Tumblr WhatsApp Email
Share
Facebook Twitter LinkedIn Pinterest Telegram Email
Properties of new materials for microchips can now be measured well
Delft University of Technology researcher Gerard Verbiest in his nanoacoustics lab. Credit: Studio Wavy / TU Delft

Making ever smaller and more powerful chips requires new ultrathin materials: 2D materials that are only 1 atom thick, or even just a couple of atoms. Think about graphene or ultra-thin silicon membrane for instance.

Scientists at TU Delft have taken an important step in application of these materials: they can now measure important thermal properties of ultrathin silicon membranes. A major advantage of their method is that no physical contact needs to be made with the membrane, so pristine properties can be measured and no complex fabrication is required.

The findings are published in the journal APL Materials.

“Extremely thin membranes have very different properties from the materials we see around us. For example, graphene is stronger than steel yet extremely flexible,” says TU Delft researcher Gerard Verbiest. “These are properties that make these materials very suitable for use in sensors, provided those properties are properly understood.”

As with many electronics, heat conduction is a big challenge for realizing the best performance. It helps determine how well a material will respond to certain loads a chip or sensor has to carry. Heat conduction in two dimensions is fundamentally different from that in three dimensions.

As a consequence, the thermal properties of 2D materials are of great interest, from both scientific and application points of view. However, few techniques are available for the accurate determination of these properties in ultrathin suspended membranes.

The researchers used an optomechanical methodology for extracting the thermal expansion coefficient, specific heat, and thermal conductivity of ultrathin membranes made of 2H-TaS2, FePS3, polycrystalline silicon, MoS2, and WSe2. It involved driving a suspended membrane using a power-modulated laser and measuring its time-dependent deflection with a second laser. This way, both the temperature-dependent mechanical fundamental resonance frequency of the membrane and characteristic thermal time constant at which the membrane cools down are measured

See also  Inhalable sensors could enable early lung cancer detection

Collaboration between science and industry is crucial for development of this technology. Verbiest says, “By measuring thin silicon membranes in this project we have shown the technique we developed in Delft to work on materials relevant to the semiconductor industry. This gives research an extra boost, because the insights then potentially lead immediately to a future industrial application, which is important for the Netherlands and a significant motivation for such research.”

The obtained thermal properties are in good agreement with the values reported in the literature for the same materials. This research provides an optomechanical method for determining the thermal properties of ultrathin suspended membranes, which are difficult to measure otherwise. It provides a route toward improving our understanding of heat transport in the 2D limit and facilitates engineering of 2D structures with a dedicated thermal performance.

Provided by
Delft University of Technology



Source link

Share. Facebook Twitter Pinterest LinkedIn Tumblr Email

Related Posts

Advanced AFM Imaging of 200 mm Samples

June 11, 2025

Semi-damascene integration approach enables achievement of 16nm pitch Ru lines with record-low resistance

June 11, 2025

Engineered nanostructures boost CAR T-cell potency and longevity for cancer therapy

June 11, 2025

PiFM and its Role in Nanoscale Chemical Imaging

June 10, 2025

Clay-based nanomaterials offer solution to capture carbon dioxide and combat climate change

June 10, 2025

Nanoparticle smart spray helps crops block infection before it starts

June 10, 2025

Comments are closed.

Top Articles
News

A modern digital light processing technology to 3D print microfluidic chips

News

Hexagons of hexagonal boron nitride join up to form 2D insulator for next-gen electronic devices

News

Cancer Tumors Reduced by 90% Using Nanorobots

Editors Picks

Advanced AFM Imaging of 200 mm Samples

June 11, 2025

Semi-damascene integration approach enables achievement of 16nm pitch Ru lines with record-low resistance

June 11, 2025

Engineered nanostructures boost CAR T-cell potency and longevity for cancer therapy

June 11, 2025

PiFM and its Role in Nanoscale Chemical Imaging

June 10, 2025
About Us
About Us

Your go-to source for the latest nanotechnology breakthroughs. Explore innovations, applications, and implications shaping the future at the molecular level. Stay informed, embrace the nano-revolution.

We're accepting new partnerships right now.

Facebook X (Twitter) Instagram Pinterest
Our Picks

The Benefits of Using XRD to Analyze Thin Films

September 24, 2023

Nanoelectronic Devices Uses 100x Less Energy

October 12, 2023

Innovative Optical Nanoprobes Enhance Cancer Imaging Precision

July 23, 2024

Subscribe to Updates

Get the latest creative Nano Tech news from Elnano.com

© 2025 Elnano.com - All rights reserved.
  • Contact
  • Privacy Policy
  • Terms & Conditions

Type above and press Enter to search. Press Esc to cancel.

Cleantalk Pixel