Close Menu
  • News
  • Medical
  • Technology
  • Nanomaterials
  • Research
  • Blog
    • Nasiol.com
  • Contact
    • Tech7685@gmail.com
What's Hot

New insights show universal applicability of carbyne as a sensor

May 31, 2025

A new molecular model of bilayer graphene with higher semiconducting properties

May 31, 2025

5 Nanomaterial Innovations That Didn’t Deliver (Yet)

May 30, 2025
Facebook X (Twitter) Instagram
Nanotech – Nanomaterials | Medical | Research | News Stories Updated Daily Nanotech – Nanomaterials | Medical | Research | News Stories Updated Daily
  • News
  • Medical
  • Technology
  • Nanomaterials
  • Research
  • Blog
    • Nasiol.com
  • Contact
    • Tech7685@gmail.com
Facebook X (Twitter) Instagram
Nanotech – Nanomaterials | Medical | Research | News Stories Updated Daily Nanotech – Nanomaterials | Medical | Research | News Stories Updated Daily
Home»News»Researchers achieve >99% photoluminescence quantum yield in metal nanoclusters
News

Researchers achieve >99% photoluminescence quantum yield in metal nanoclusters

March 25, 2024No Comments2 Mins Read
Facebook Twitter Pinterest Telegram LinkedIn Tumblr WhatsApp Email
Researchers achieve >99% photoluminescence quantum yield in metal nanoclusters
Share
Facebook Twitter LinkedIn Pinterest Telegram Email
Molecular structures of Au22 and Au16Cu6 and structure anatomy of Au16Cu6. Credit: Prof. Zhou’s team

A research team has achieved near-unity room-temperature photoluminescence quantum yield (PLQY) (>99%) in the near-infrared (NIR) emission of metal nanoclusters in solution. Their work is published in Science.

Gold nanoclusters (Au NCs) as NIR-emissive materials hold potential in biomedical applications. However, the PLQY of Au NCs in the NIR region is typically low, often less than 10%. To address this problem, researchers synthesized Au22(tBuPhC≡C)18(Au22) and its copper-doped counterpart, Au16Cu6(tBuPhC≡C)18 (Au16Cu6), to study their photophysical properties.

Single-crystal X-ray diffraction analysis revealed that Au22 and Au16Cu6 share similar structures. Au22 showed an emission peak at 690 nm and Au16Cu6 at 720 nm. The absolute PLQY of Au22 and Au16Cu6 in air were 9% and 95%, respectively.

In the deaerated solution, the PLQY of Au16Cu6 reached 100%, measured by both absolute and relative methods. Time-correlated single-photon counting measured the photoluminescence lifetimes of Au22 and Au16Cu6 to be 485 ns and 1.64 μs, respectively.

Further investigation of NCs’ excited-state dynamics through transient-absorption spectroscopy revealed that both NCs’ luminescent states originated from the triplet state (T1), with distinct dynamic processes observed in femtosecond transient-absorption spectroscopy. Under 380 nm excitation, Au22 showed a slow rise of 148 ps, while Au16Cu6 showed a rapid relaxation of 0.5 ps.

Triplet sensitization experiments confirmed that these processes are attributed to ultrafast intersystem crossing (ISC) from singlet state (S1) to T1. Due to copper doping, Au16Cu6 has a smaller ∆Est, significantly accelerating its ISC rate. As a result, Au16Cu6 ultimately showcases PLQY close to 100%.

See also  Analysis of heterostructures for spintronics shows how two desired quantum-physical effects reinforce each other

The approach to achieve near-unity PLQY could enable the development of highly emissive metal cluster materials. Specifically, this work demonstrates that near-unity PLQY can be attained with an alloy of gold-copper nanoclusters even in solution at room temperature, which will enable applications ranging from biological imaging to luminescent devices.

The research team included Prof. Zhou Meng’s group from the University of Science and Technology of China of the Chinese Academy of Sciences (CAS), collaborating with Prof. Wang Quanming’s team from Tsinghua University.

Provided by
University of Science and Technology of China


Source link

achieve metal nanoclusters photoluminescence quantum Researchers yield
Share. Facebook Twitter Pinterest LinkedIn Tumblr Email

Related Posts

New insights show universal applicability of carbyne as a sensor

May 31, 2025

A new molecular model of bilayer graphene with higher semiconducting properties

May 31, 2025

5 Nanomaterial Innovations That Didn’t Deliver (Yet)

May 30, 2025

Scientists identify new 2D copper boride material with unique atomic structure

May 30, 2025

Nanoscale biosensor lets scientists monitor molecules in real time

May 30, 2025

How should we govern nanotechnology?

May 29, 2025

Comments are closed.

Top Articles
News

Driving photochemistry with sub-molecular precision

News

How to Choose the Right Homogenizer

Research

Market Trends: Leading Innovations in Nanotech-Enhanced Medical Devices

Editors Picks

New insights show universal applicability of carbyne as a sensor

May 31, 2025

A new molecular model of bilayer graphene with higher semiconducting properties

May 31, 2025

5 Nanomaterial Innovations That Didn’t Deliver (Yet)

May 30, 2025

Scientists identify new 2D copper boride material with unique atomic structure

May 30, 2025
About Us
About Us

Your go-to source for the latest nanotechnology breakthroughs. Explore innovations, applications, and implications shaping the future at the molecular level. Stay informed, embrace the nano-revolution.

We're accepting new partnerships right now.

Facebook X (Twitter) Instagram Pinterest
Our Picks

The medicine of the future could be artificial life forms

October 12, 2023

Using Advanced FIB-SEM Tomography to Characterize Solid Oxide Electrolysis Cells

November 30, 2023

Sensor technology uses nature’s blueprint and machinery to monitor metabolism in body

April 4, 2025

Subscribe to Updates

Get the latest creative Nano Tech news from Elnano.com

© 2025 Elnano.com - All rights reserved.
  • Contact
  • Privacy Policy
  • Terms & Conditions

Type above and press Enter to search. Press Esc to cancel.

Cleantalk Pixel