Close Menu
  • News
  • Medical
  • Technology
  • Nanomaterials
  • Research
  • Blog
    • Nasiol.com
  • Contact
    • Tech7685@gmail.com
What's Hot

Naturally derived nanoparticles show promise against cardiovascular and kidney disease

June 6, 2025

Ballistic electrons chart a new course for next-gen terahertz devices

June 6, 2025

‘Stealthy’ lipid nanoparticles give mRNA vaccines a makeover

June 5, 2025
Facebook X (Twitter) Instagram
Nanotech – Nanomaterials | Medical | Research | News Stories Updated Daily Nanotech – Nanomaterials | Medical | Research | News Stories Updated Daily
  • News
  • Medical
  • Technology
  • Nanomaterials
  • Research
  • Blog
    • Nasiol.com
  • Contact
    • Tech7685@gmail.com
Facebook X (Twitter) Instagram
Nanotech – Nanomaterials | Medical | Research | News Stories Updated Daily Nanotech – Nanomaterials | Medical | Research | News Stories Updated Daily
Home»News»Unveiling the Mysteries of Electron Tunneling
News

Unveiling the Mysteries of Electron Tunneling

January 25, 2024No Comments4 Mins Read
Facebook Twitter Pinterest Telegram LinkedIn Tumblr WhatsApp Email
Unveiling the Mysteries of Electron Tunneling
Share
Facebook Twitter LinkedIn Pinterest Telegram Email

By Light Publishing Center, Changchun Institute of Optics, Fine Mechanics And Physics, CAS January 25, 2024

New research reveals new insights into electron tunneling dynamics at the sub-nanometer scale. Using a van der Waals complex, Ar-Kr+, and an innovative approach for tracking tunneling dynamics, the research highlights the crucial influence of neighboring atoms in quantum tunneling. This work has important implications for quantum physics, nanoelectronics, and the study of complex biomolecules.

Tunneling is a fundamental process in quantum mechanics, involving the ability of a wave packet to cross an energy barrier that would be impossible to overcome by classical means. At the atomic level, this tunneling phenomenon significantly influences molecular biology. It aids in speeding up enzyme reactions, causes spontaneous DNA mutations, and initiates the sequences of events that lead to the sense of smell.

Photoelectron tunneling is a key process in light-induced chemical reactions, charge and energy transfer, and radiation emission. The size of optoelectronic chips and other devices has been close to the sub-nanometer atomic scale, and the quantum tunneling effects between different channels would be significantly enhanced.

Electronic Chip and the Van der Waals Complex With an Internuclear Distance 0.39 nm

The electronic chip and the Van der Waals complex with an internuclear distance 0.39 nm. Credit: Ming Zhu, Jihong Tong, Xiwang Liu, Weifeng Yang, Xiaochun Gong, Wenyu Jiang, Peifen Lu, Hui Li, Xiaohong Song & Jian Wu

The real-time imaging of electron tunneling dynamics in complex has important scientific significance for promoting the development of tunneling transistors and ultrafast optoelectronic devices. The effect of neighboring atoms on electron tunneling dynamics in the complex is one of the key scientific issues in the fields of quantum physics, quantum chemistry, nanoelectronics, etc.

See also  Pioneering Cuprotosis: Unveiling Copper's Crucial Role in Regulating Cell Death and Its Potential for Revolutionary Healthcare Breakthroughs

Recent Research Developments

In a new paper published in Light Science & Application, a team of scientists from Hainan University and East China Normal University designed a van der Waals complex Ar-Kr+ as a prototype system with an internuclear distance of 0.39 nm to track the electron tunneling via the neighboring atom in the system of sub-nanometer scale.

Tunnelling of Electron via the Neighboring Atom in Strong Field Ionization of a Dimer

The electron emitted from Ar atom is firstly trapped to the highly excited transient states of the Ar-Kr+* before its eventual release to the continuum. A linearly polarized pump laser pulse is used to prepare the Ar-Kr+ ion by removing e1 from Kr site, and a time-delayed elliptically polarized probe laser pulse is used to track the electron transfer mediated electron tunneling dynamics (e2, orange arrow). Credit: Ming Zhu, Jihong Tong, Xiwang Liu, Weifeng Yang, Xiaochun Gong, Wenyu Jiang, Peifen Lu, Hui Li, Xiaohong Song & Jian Wu

The intrinsic electron localization of the highest occupied molecular orbital of Ar-Kr gives a preference for electron removal from the Kr site in the first ionization step. The site-assisted electron-hole in Ar-Kr+ guarantees that the second electron is mainly removed from the Ar atom in the second ionization step, where the electron may straightly tunnel to the continuum from the Ar atom or alternatively via the neighboring Kr+ ionic core.

In combination with the improved Coulomb-corrected strong-field approximation (ICCSFA) method developed by the team, which is able to take into account the Coulomb interaction under the potential during tunneling, and by monitoring the photoelectron transverse momentum distribution to track the tunneling dynamics, then, it was discovered that there are two effects of strong capture and weak capture of tunneling electrons by a neighboring atom.

See also  Taking A Closer Look at Zeolites With Electron Microscopy

This work successfully reveals the critical role of neighboring atoms in electron tunneling in sub-nanometer complex systems. This discovery provides a new way to deeply understand the key role of the Coulomb effect under the potential barrier in the electron tunneling dynamics, solid high harmonics generation, and lays a solid research foundation for probing and controlling the tunneling dynamics of complex biomolecules.

Reference: “Tunnelling of electrons via the neighboring atom” by Ming Zhu, Jihong Tong, Xiwang Liu, Weifeng Yang, Xiaochun Gong, Wenyu Jiang, Peifen Lu, Hui Li, Xiaohong Song and Jian Wu, 16 January 2024, Light: Science & Applications.
DOI: 10.1038/s41377-023-01373-2

The study was funded by the National Natural Science Foundation of China, the Hainan Provincial Natural Science Foundation of China, Fundamental Research Funds for the Central Universities, and the Sino-German Center for Research Promotion.


Source link

electron Mysteries Tunneling Unveiling
Share. Facebook Twitter Pinterest LinkedIn Tumblr Email

Related Posts

Naturally derived nanoparticles show promise against cardiovascular and kidney disease

June 6, 2025

Ballistic electrons chart a new course for next-gen terahertz devices

June 6, 2025

‘Stealthy’ lipid nanoparticles give mRNA vaccines a makeover

June 5, 2025

Single-layer waveguide display uses achromatic metagratings for more compact augmented reality eyewear

June 5, 2025

2D hybrid material integrates graphene and silica glass for next-generation electronics

June 4, 2025

Zeolite nanopore model links crystal size to metal cluster migration and catalyst performance

June 4, 2025

Comments are closed.

Top Articles
Medical

Novel bottom-up approach in synthetic immunology opens a new frontier for disease treatment

News

Nanocrystal Breakthrough Transforms Infrared Light Conversion

News

Resistivity Metrology for Sputtered ITO Thin Films

Editors Picks

Naturally derived nanoparticles show promise against cardiovascular and kidney disease

June 6, 2025

Ballistic electrons chart a new course for next-gen terahertz devices

June 6, 2025

‘Stealthy’ lipid nanoparticles give mRNA vaccines a makeover

June 5, 2025

Single-layer waveguide display uses achromatic metagratings for more compact augmented reality eyewear

June 5, 2025
About Us
About Us

Your go-to source for the latest nanotechnology breakthroughs. Explore innovations, applications, and implications shaping the future at the molecular level. Stay informed, embrace the nano-revolution.

We're accepting new partnerships right now.

Facebook X (Twitter) Instagram Pinterest
Our Picks

Scientists develop magnesium-enriched nanofiber patches for safer wound healing

February 22, 2025

Next-generation mRNA vaccine delivery system uses biodegradable polymers

February 16, 2025

Electrical AFM, An Indispensable Tool in the Semiconductor Industry

February 8, 2024

Subscribe to Updates

Get the latest creative Nano Tech news from Elnano.com

© 2025 Elnano.com - All rights reserved.
  • Contact
  • Privacy Policy
  • Terms & Conditions

Type above and press Enter to search. Press Esc to cancel.

Cleantalk Pixel