Close Menu
  • News
  • Medical
  • Technology
  • Nanomaterials
  • Research
  • Blog
    • Nasiol.com
  • Contact
    • Tech7685@gmail.com
What's Hot

Self-stirring nanoreactors enhance reaction efficiency for chemical synthesis

June 7, 2025

Ultrathin resonators set new standard for efficient light manipulation

June 7, 2025

Naturally derived nanoparticles show promise against cardiovascular and kidney disease

June 6, 2025
Facebook X (Twitter) Instagram
Nanotech – Nanomaterials | Medical | Research | News Stories Updated Daily Nanotech – Nanomaterials | Medical | Research | News Stories Updated Daily
  • News
  • Medical
  • Technology
  • Nanomaterials
  • Research
  • Blog
    • Nasiol.com
  • Contact
    • Tech7685@gmail.com
Facebook X (Twitter) Instagram
Nanotech – Nanomaterials | Medical | Research | News Stories Updated Daily Nanotech – Nanomaterials | Medical | Research | News Stories Updated Daily
Home»News»Material discovery may help realize low-cost and long-life memory chips
News

Material discovery may help realize low-cost and long-life memory chips

August 24, 2023No Comments2 Mins Read
Facebook Twitter Pinterest Telegram LinkedIn Tumblr WhatsApp Email
Material discovery may help realize low-cost and long-life memory chips
Share
Facebook Twitter LinkedIn Pinterest Telegram Email
Deposition method of HZO layer. HZO layers of the TiN/HZO/TiN capacitor were deposited by magnetron Co-sputtering of Hf and ZrO2 targets, and oxygen (0.6 sccm) and argon (40 sccm) are forced into the chamber. To vary the Hf/Zr content between samples, the ZrO2 source power was kept constant (at 110 W) while the Hf source power was varied from 20 W to 28 W. Credit: Science (2023). DOI: 10.1126/science.adf6137

Hafnium oxide-based ferroelectric materials are promising candidates for next-generation nanoscale devices due to their integration into silicon electronics.

In a study published in Science, researchers from the Institute of Microelectronics of the Chinese Academy of Sciences (IMECAS) and the Institute of Physics of CAS made the discovery of a stable rhombohedral ferroelectric Hf(Zr)+xO2 which exhibits an ultra-low coercive field.

The intrinsic high coercive field of the fluorite ferroelectric Hf(Zr)O2 devices leads to the incompatible operating voltage with advanced technology nodes and limited endurance. In this work, a stable ferroelectric r-phase Hf(Zr)1+xO2 material which effectively reduces the switching barrier of ferroelectric dipoles in HfO2-based materials was discovered.

Scanning transmission electron microscopy (STEM) verified the intercalation of excess Hf(Zr) atoms within the hollow sites, forming an ordered array. Density functional theory calculations (DFT) provided insights into the underlying mechanism that the intercalated atoms stabilize the ferroelectric phase and reduce its switching barrier.

The ferroelectric devices based on the r-phase Hf(Zr)1+xO2 exhibit an ultra-low coercive field (~0.65 MV/cm), a high remnant polarization (Pr) value of 22 μC/cm2, a small saturation polarization field (1.25 MV/cm) and high endurance (1012 cycles).

The work has applications in low-cost and long-life memory chips.

Provided by
Chinese Academy of Sciences



Source link

See also  Synthesis method for 1D segmented heteronanostructures uses stress-induced axial ordering
CHIPS discovery longlife lowcost Material memory realize
Share. Facebook Twitter Pinterest LinkedIn Tumblr Email

Related Posts

Self-stirring nanoreactors enhance reaction efficiency for chemical synthesis

June 7, 2025

Ultrathin resonators set new standard for efficient light manipulation

June 7, 2025

Naturally derived nanoparticles show promise against cardiovascular and kidney disease

June 6, 2025

Ballistic electrons chart a new course for next-gen terahertz devices

June 6, 2025

‘Stealthy’ lipid nanoparticles give mRNA vaccines a makeover

June 5, 2025

Single-layer waveguide display uses achromatic metagratings for more compact augmented reality eyewear

June 5, 2025

Comments are closed.

Top Articles
Research

Merging Nature and Technology through 3D-Printed Cilia Sensors

News

Ballistic electrons chart a new course for next-gen terahertz devices

News

Are Low Carbon Nanomaterials the Key to a Greener Tomorrow?

Editors Picks

Self-stirring nanoreactors enhance reaction efficiency for chemical synthesis

June 7, 2025

Ultrathin resonators set new standard for efficient light manipulation

June 7, 2025

Naturally derived nanoparticles show promise against cardiovascular and kidney disease

June 6, 2025

Ballistic electrons chart a new course for next-gen terahertz devices

June 6, 2025
About Us
About Us

Your go-to source for the latest nanotechnology breakthroughs. Explore innovations, applications, and implications shaping the future at the molecular level. Stay informed, embrace the nano-revolution.

We're accepting new partnerships right now.

Facebook X (Twitter) Instagram Pinterest
Our Picks

Simulating blood flow dynamics for improved nanoparticle drug delivery

July 4, 2024

Taking A Closer Look at Zeolites With Electron Microscopy

October 5, 2023

Nanoimprint Lithography: Advantages and Disadvantages

July 12, 2024

Subscribe to Updates

Get the latest creative Nano Tech news from Elnano.com

© 2025 Elnano.com - All rights reserved.
  • Contact
  • Privacy Policy
  • Terms & Conditions

Type above and press Enter to search. Press Esc to cancel.

Cleantalk Pixel